960 resultados para Exhaled Respiratory Droplets
Resumo:
Nutrition assessment is important during chronic respiratory insufficiency to evaluate the level of malnutrition or obesity and should include body composition measurements. The appreciation of fat-free and fat reserves in patients with chronic respiratory insufficiency can aid in designing an adapted nutritional support, e.g., nutritional support in malnutrition and food restriction in obesity. The purpose of the present study was to cross-validate fat-free and fat mass obtained by various bioelectric impedance (BIA) formulas with the fat-free and fat mass measured by dual-energy X-ray absorptiometry (DXA) and determine the formulas that are best suited to predict the fat-free and fat mass for a group of patients with severe chronic respiratory insufficiency. Seventy-five patients (15 women and 60 men) with chronic obstructive and restrictive respiratory insufficiency aged 45-86 y were included in this study. Body composition was calculated according to 13 different BIA formulas for women and 12 for men and compared with DXA. Because of the variability, calculated as 2 standard deviations, of +/- 5.0 kg fat-free mass for women and +/- 6.4 kg for men for the best predictive formula, the use of the various existing BIA formulas was considered not clinically relevant. Therefore disease-specific formulas for patients with chronic respiratory insufficiency should be developed to improve the prediction of fat-free and fat mass by BIA in these patients.
Resumo:
Direct evidence confirming the hypothesis that a dysfunction of the mitochondrial respiratory chain (MRC) underlies the pathogenesis of hyperlactatemia associated with highly active antiretroviral therapy (HAART) is scarce. We studied mitochondrial DNA (mtDNA) content and MRC function in the skeletal muscle of an HIV-infected patient during an episode of symptomatic hyperlactatemia. Skeletal muscle biopsy was performed during the episode when the patient was symptomatic and 3 months later when the patient was clinically recovered. Assessment of mitochondria was performed using histological, polarographic, spectrophotometrical, and Southern blot and real time PCR DNA quantification methods. The histological study disclosed extensive mitochondrial impairment in the form of ragged-red fibers or equivalents on oxidative reactions. These findings were associated with an increase in mitochondrial content and a decrease in both mitochondrial respiratory capacity and MRC enzyme activities. Mitochondrial DNA content declined to 53% of control values. Mitochondrial abnormalities had almost disappeared later when the patient became asymptomatic. Our findings support the hypothesis that MRC dysfunction stands at the basis of HAART-related hyperlactatemia.
Resumo:
Direct evidence confirming the hypothesis that a dysfunction of the mitochondrial respiratory chain (MRC) underlies the pathogenesis of hyperlactatemia associated with highly active antiretroviral therapy (HAART) is scarce. We studied mitochondrial DNA (mtDNA) content and MRC function in the skeletal muscle of an HIV-infected patient during an episode of symptomatic hyperlactatemia. Skeletal muscle biopsy was performed during the episode when the patient was symptomatic and 3 months later when the patient was clinically recovered. Assessment of mitochondria was performed using histological, polarographic, spectrophotometrical, and Southern blot and real time PCR DNA quantification methods. The histological study disclosed extensive mitochondrial impairment in the form of ragged-red fibers or equivalents on oxidative reactions. These findings were associated with an increase in mitochondrial content and a decrease in both mitochondrial respiratory capacity and MRC enzyme activities. Mitochondrial DNA content declined to 53% of control values. Mitochondrial abnormalities had almost disappeared later when the patient became asymptomatic. Our findings support the hypothesis that MRC dysfunction stands at the basis of HAART-related hyperlactatemia.
Resumo:
AbstractMyotonic dystrophy type 1 (DM1), also known as Steinert's disease, is an inherited autosomal dominant disease. DM1 is characterized by myotonia, muscular weakness and atrophy, but it has a multisystemic phenotype. The genetic basis of the disease is the abnormal expansion of CTG repeats in the 3' untranslated region of the DM protein kinase (DMPK) gene on chromosome 19. The size of the expansion correlates to the severity of the disease and the age of onset.Respiratory problems have long been recognized to be a major feature of the disease and are the main factor contributing to mortality ; however the mechanisms are only partly known. The aim of our study is to investigate whether respiratory failure results only from the involvement of the dystrophic process at the level of the respiratory muscles or comes also from abnormalities in the neuronal network that generates and controls the respiratory rhythm. The generation of valid transgenic mice displaying the human DM1 phenotype by the group of Dr. Gourdon provided us a useful tool to analyze the brain stem respiratory neurons, spinal phrenic motoneurons and phrenic nerves. We examined therefore these structures in transgenic mice carrying 350-500 CTGs and displaying a mild form of the disease (DM1 mice). The morphological and morphometric analysis of diaphragm muscle sections revealed a denervation of the end-plates (EPs), characterized by a decrease in size and shape complexity of EPs and a reduction in the density of acetylcholine receptors (AChRs). Also a strong and significant reduction in the number of phrenic unmyelinated fibers was detected, but not in the myelinated fibers. In addition, no pathological changes were detected in the cervical motoneurons and medullary respiratory centers (Panaite et al., 2008). These results suggest that the breathing rhythm is probably not affected in mice expressing a mild form of DM1, but rather the transmission of action potentials at the level of diaphragm NMJs is deficient.Because size of the mutation increases over generations, new transgenic mice were obtained from the mice with 350-500 CTGs, resulting from a large increase of CTG repeat in successive generations, these mice carry more than 1300 CTGs (DMSXL) and display a severe DM1 phenotype (Gomes-Pereira et al., 2007). Before we study the mechanism underlying the respiratory failure in DMSXL mice, we analyzed the peripheral nervous system (PNS) in these mice by electrophysiological, histological and morphometric methods. Our results provide strong evidence that DMSXL mice have motor neuropathy (Panaite et al., 2010, submitted). Therefore the DMSXL mice expressing severe DM1 features represent for us a good tool to investigate, in the future, the physiological, structural and molecular alterations underlying respiratory failure in DM1. Understanding the mechanism of respiratory deficiency will help to better target the therapy of these problems in DM1 patients. In addition our results may, in the future, orientate pharmaceutical and clinical research towards possible development of therapy against respiratory deficits associated with the DM1.RésuméLa dystrophic myotonique type 1 (DM1), aussi dénommée maladie de Steinert, est une maladie héréditaire autosomique dominante. Elle est caractérisée par une myotonie, une faiblesse musculaire avec atrophie et se manifeste aussi par un phénotype multisystémique. La base génétique de la maladie est une expansion anormale de répétitions CTG dans une région non traduite en 3' du gène de la DM protéine kinase (DMPK) sur le chromosome 19. La taille de l'expansion est corrélée avec la sévérité et l'âge d'apparition de DM1.Bien que les problèmes respiratoires soient reconnus depuis longtemps comme une complication de la maladie et soient le principal facteur contribuant à la mortalité, les mécanismes en sont partiellement connus. Le but de notre étude est d'examiner si l'insuffisance respiratoire de la DM1 est dû au processus dystrophique au niveau des muscles respiratoires ou si elle est entraînée aussi par des anomalies dans le réseau neuronal qui génère et contrôle le rythme respiratoire. La production par le groupe du Dr. Gourdon de souris transgéniques de DM1, manifestant le phénotype de DM1 humaine, nous a fourni un outil pour analyser les nerfs phréniques, les neurones des centres respiratoires du tronc cérébral et les motoneurones phréniques. Par conséquence, nous avons examiné ces structures chez des souris transgéniques portant 350-500 CTG et affichant une forme légère de la maladie (souris DM1). L'analyse morphologique et morphométrique des sections du diaphragme a révélé une dénervation des plaques motrices et une diminution de la taille et de la complexité de la membrane postsynaptîque, ainsi qu'une réduction de la densité des récepteurs à l'acétylcholine. Nous avons aussi détecté une réduction significative du nombre de fibres nerveuses non myélinisées mais pas des fibres myélinisées. Par ailleurs, aucun changement pathologique n'a été détecté pour les neurones moteurs médullaires cervicaux et centres respiratoires du tronc cérébral (Panaite et al., 2008). Ces résultats suggèrent que le iythme respiratoire n'est probablement pas affecté chez les souris manifestant une forme légère du DM1, mais plutôt que la transmission des potentiels d'action au niveau des plaques motrices du diaphragme est déficiente.Comme la taille du mutation augmente au fil des générations, de nouvelles souris transgéniques ont été générés par le groupe Gourdon; ces souris ont plus de 1300 CTG (DMSXL) et manifestent un phénotype sévère du DM1 (Gomes-Pereira et al., 2007). Avant d'étudier le mécanisme sous-jacent de l'insuffisance respiratoire chez les souris DMSXL, nous avons analysé le système nerveux périphérique chez ces souris par des méthodes électrophysiologiques, histologiques et morphométriques. Nos résultats fournissent des preuves solides que les souris DMSXL manifestent une neuropathie motrice (Panaite et al., 2010, soumis). Par conséquent, les souris DMSXL représentent pour nous un bon outil pour étudier, à l'avenir, les modifications physiologiques, morphologiques et moléculaires qui sous-tendent l'insuffisance respiratoire du DM1. La connaissance du mécanisme de déficience respiratoire en DM1 aidera à mieux cibler le traitement de ces problèmes aux patients. De plus, nos résultats pourront, à l'avenir, orienter la recherche pharmaceutique et clinique vers le développement de thérapie contre le déficit respiratoire associé à DM1.
Resumo:
Myotonic dystrophy (DM1) is a multisystemic disease caused by an expansion of CTG repeats in the region of DMPK, the gene encoding DM protein kinase. The severity of muscle disability in DM1 correlates with the size of CTG expansion. As respiratory failure is one of the main causes of death in DM1, we investigated the correlation between respiratory impairment and size of the (CTG)n repeat in DM1 animal models. Using pressure plethysmography the respiratory function was assessed in control and transgenic mice carrying either 600 (DM600) or >1300 CTG repeats (DMSXL). The statistical analysis of respiratory parameters revealed that both DM1 transgenic mice sub-lines show respiratory impairment compared to control mice. In addition, there is no significant difference in breathing functions between the DM600 and DMSXL mice. In conclusion, these results indicate that respiratory impairment is present in both transgenic mice sub-lines, but the severity of respiratory failure is not related to the size of the (CTG)n expansion.
Resumo:
The origin of the carbon atoms in CO2 respired by leaves in the dark of several plant species has been studied using 13C/12C stable isotopes. This study was conducted using an open gas exchange system for isotope labeling that was coupled to an elemental analyser and further linked to an isotope ratio mass spectrometer (EA-IRMS) or coupled to a gas chromatography-combustion-isotope ratio mass spectrometer (GC-C-IRMS). We demonstrate here that the carbon, which is recently assimilated during photosynthesis, accounts for nearly ca. 50% of the carbon in the CO2 lost through dark respiration after illumination in fast-growing and cultivated plants and trees and, accounts for only ca. 10% in slow-growing plants. Moreover, our study shows that fast- growing plants, which had the largest percentages of newly fixed carbon of leaf-respired CO2 , were also those with the largest shoot/root ratios, whereas slow-growing plants showed the lowest shoot/root values.
Resumo:
Microphthalmia with linear skin defects (MLS) syndrome is an X-linked male-lethal disorder also known as MIDAS (microphthalmia, dermal aplasia, and sclerocornea). Additional clinical features include neurological and cardiac abnormalities. MLS syndrome is genetically heterogeneous given that heterozygous mutations in HCCS or COX7B have been identified in MLS-affected females. Both genes encode proteins involved in the structure and function of complexes III and IV, which form the terminal segment of the mitochondrial respiratory chain (MRC). However, not all individuals with MLS syndrome carry a mutation in either HCCS or COX7B. The majority of MLS-affected females have severe skewing of X chromosome inactivation, suggesting that mutations in HCCS, COX7B, and other as-yet-unidentified X-linked gene(s) cause selective loss of cells in which the mutated X chromosome is active. By applying whole-exome sequencing and filtering for X-chromosomal variants, we identified a de novo nonsense mutation in NDUFB11 (Xp11.23) in one female individual and a heterozygous 1-bp deletion in a second individual, her asymptomatic mother, and an affected aborted fetus of the subject's mother. NDUFB11 encodes one of 30 poorly characterized supernumerary subunits of NADH:ubiquinone oxidoreductase, known as complex I (cI), the first and largest enzyme of the MRC. By shRNA-mediated NDUFB11 knockdown in HeLa cells, we demonstrate that NDUFB11 is essential for cI assembly and activity as well as cell growth and survival. These results demonstrate that X-linked genetic defects leading to the complete inactivation of complex I, III, or IV underlie MLS syndrome. Our data reveal an unexpected role of cI dysfunction in a developmental phenotype, further underscoring the existence of a group of mitochondrial diseases associated with neurocutaneous manifestations.
Resumo:
The aim of this study was to evaluate the pathogenicity of Parachlamydia (P.) acanthamoebae as a potential agent of lower respiratory tract disease in a bovine model of induced lung infection. Intrabronchial inoculation with P. acanthamoebae was performed in healthy calves aged 2-3 months using two challenge doses: 10(8) and 10(10) bacteria per animal. Controls received 10(8) heat-inactivated bacteria. Challenge with 10(8) viable Parachlamydia resulted in a mild degree of general indisposition, whereas 10(10) bacteria induced a more severe respiratory illness becoming apparent 1-2 days post inoculation (dpi), affecting 9/9 (100%) animals and lasting for 6 days. The extent of macroscopic pulmonary lesions was as high as 6.6 (6.0)% [median (range)] of lung tissue at 2-4 dpi and correlated with parachlamydial genomic copy numbers detected by PCR, and with bacterial load estimated by immunohistochemistry in lung tissue. Clinical outcome, acute phase reactants, pathological findings and bacterial load exhibited an initial dose-dependent effect on severity. Animals fully recovered from clinical signs of respiratory disease within 5 days. The bovine lung was shown to be moderately susceptible to P. acanthamoebae, exhibiting a transient pneumonic inflammation after intrabronchial challenge. Further studies are warranted to determine the precise pathophysiologic pathways of host-pathogen interaction.
Resumo:
PURPOSE: To combine weighted iterative reconstruction with self-navigated free-breathing coronary magnetic resonance angiography for retrospective reduction of respiratory motion artifacts. METHODS: One-dimensional self-navigation was improved for robust respiratory motion detection and the consistency of the acquired data was estimated on the detected motion. Based on the data consistency, the data fidelity term of iterative reconstruction was weighted to reduce the effects of respiratory motion. In vivo experiments were performed in 14 healthy volunteers and the resulting image quality of the proposed method was compared to a navigator-gated reference in terms of acquisition time, vessel length, and sharpness. RESULT: Although the sampling pattern of the proposed method contained 60% more samples with respect to the reference, the scan efficiency was improved from 39.5 ± 10.1% to 55.1 ± 9.1%. The improved self-navigation showed a high correlation to the standard navigator signal and the described weighting efficiently reduced respiratory motion artifacts. Overall, the average image quality of the proposed method was comparable to the navigator-gated reference. CONCLUSION: Self-navigated coronary magnetic resonance angiography was successfully combined with weighted iterative reconstruction to reduce the total acquisition time and efficiently suppress respiratory motion artifacts. The simplicity of the experimental setup and the promising image quality are encouraging toward future clinical evaluation. Magn Reson Med 73:1885-1895, 2015. © 2014 Wiley Periodicals, Inc.
Resumo:
BACKGROUND: Rhinovirus is the most common cause of respiratory viral infections and leads to frequent respiratory symptoms in lung transplant recipients. However, it remains unknown whether the rhinovirus load correlates with the severity of symptoms. OBJECTIVES: This study aimed to better characterize the pathogenesis of rhinoviral infection and the way in which viral load correlates with symptoms. STUDY DESIGN: We assessed rhinovirus load in positive upper respiratory specimens of patients enrolled prospectively in a cohort of 116 lung transplant recipients. Rhinovirus load was quantified according to a validated in-house, real-time, reverse transcription polymerase chain reaction in pooled nasopharyngeal and pharyngeal swabs. Symptoms were recorded in a standardised case report form completed at each screening/routine follow-up visit, or during any emergency visit occurring during the 3-year study. RESULTS: Rhinovirus infections were very frequent, including in asymptomatic patients not seeking a specific medical consultation. Rhinovirus load ranged between 4.1 and 8.3 log copies/ml according to the type of visit and clinical presentation. Patients with highest symptom scores tended to have higher viral loads, particularly those presenting systemic symptoms. When considering symptoms individually, rhinovirus load was significantly higher in the presence of symptoms such as sore throat, fever, sputum production, cough, and fatigue. There was no association between tacrolimus levels and rhinovirus load. CONCLUSIONS: Rhinovirus infections are very frequent in lung transplant recipients and rhinoviral load in the upper respiratory tract is relatively high even in asymptomatic patients. Patients with the highest symptom scores tend to have a higher rhinovirus load.