973 resultados para Ethanol Fumigation
Resumo:
The effect of amorphous (am-), monoclinic (m-), and tetragonal (t-) ZrO2 phase on the physicochemical and catalytic properties of supported Cu catalysts for ethanol conversion was studied. The electronic parameters of Cu/ZrO2 were determined by in situ XAS, and the surface properties of Cu/ZrO2 were defined by XPS and DRIFTS of CO-adsorbed. The results demonstrated that the kind of ZrO2 phase plays a key role in the determination of structure and catalytic properties of Cu/ZrO 2 catalysts predetermined by the interface at Cu/ZrO2. The electron transfer between support and Cu surface, caused by the oxygen vacancies at m-ZrO2 and am-ZrO2, is responsible for the active sites for acetaldehyde and ethyl acetate formation. The highest selectivity to ethyl acetate for Cu/m-ZrO2 catalyst up to 513 K was caused by the optimal ratio of Cu0/Cu+ species and the high density of basic sites (O2-) associated with the oxygen mobility from the bulk m-ZrO2. © 2013 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to evaluate the transdentinal cytotoxicity of experimental adhesive systems (EASs) with different hydrophilicity and dentin saturation solutions on odontoblast-like cells. One hundred 0.4-mm-thick dentin discs were mounted in in vitro pulp chambers and assigned to 10 groups. MDPC-23 cells were seeded onto the pulpal side of the discs, incubated for 48 h. The EASs with increasing hydrophilicity (R1, R2, R3 and R4) were applied to the occlusal side after etching and saturation of etched dentin with water or ethanol. R0 (no adhesive) served as controls. R1 is a non-solvated hydrophobic blend, R2 is similar to a simplified etch-and-rinse adhesive system and R3 and R4 are similar to self-etching adhesives. After 24 h, cell metabolism was evaluated by MTT assay (n = 8 discs) and cell morphology was examined by SEM (n = 2 discs). Type of cell death was identified by flow cytometry and the degree of monomer conversion (%DC) was determined by infrared spectroscopy (FTIR) after 10 s or 20 s of photoactivation. Data were analyzed by the Kruskal-Wallis and Mann-Whitney tests (α = 0.05). Dentin saturation with ethanol resulted in higher necrotic cell death ratios for R2, R3 and R4 compared with water saturation, although R2 and R3 induced higher SDH production. Photoactivation for 20 s significantly improved the %DC of all EASs compared with 10 s. A significant positive correlation was observed between the degree of hydrophilicity and %DC. In conclusion, except for R1, dentin saturation with ethanol increased the cytotoxicity of EASs, as expressed by the induction of necrotic cell death. © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
This work describes the synthesis and characterization of a new octakis[3-(2,2'-dipyridylamine)propyl]octasilsesquioxane (T8-Pr-DPA), and a study of the metal ion preconcentration in fuel ethanol. Batch and column experiments were conducted to investigate for the removal of heavy metal ions from fuel ethanol. The results showed that the Langmuir allowed to describe the sorption equilibrium data of the metal ions on T8-Pr-DPA in a satisfactory way. The following maximum adsorption capacities (in mmolg-1) were determined: 3.62 for Fe (III), 3.32 for Cr (III), 2.15 for Cu (II), 1.80 for Co (II), 1.62 for Pb (II), 1.32 for Ni (II) and 0.88 for Zn (II). The thermodynamic parameters for the adsorption process such as free energy of adsorption (δG), enthalpy of adsorption (δH) and entropy of adsorption (δS) were calculated. Thermodynamic parameters showed that the system has favorable enthalpic, Gibbs free energy, and entropic values. The sorption-desorption of the metal ions has made possible the development of a preconcentration and determination method of metal ions at trace level in fuel ethanol. The method of quantitative analysis for Fe, Cu, Ni and Zn in fuel ethanol by Flame AAS was validated. Several parameters have been taken into account and evaluated for the validation of method, namely: linearity, limit of detection, limit of quantification, and the relative standard deviation and accuracy. The accuracy of the method was assessed by testing analyte recovery in the fuel ethanol samples. © 2013 Elsevier B.V.
Resumo:
An extracellular ethanol-tolerant β-glucosidase from Sporidiobolus pararoseus was purified to homogeneity and characterized, and its potential use for the enhancement of wine aroma was investigated. The crude enzymatic extract was purified in four steps (concentration, dialysis, ultrafiltration, and chromatography) with a yield of around 40 % for total activity. The purified enzyme (designated Sp-βgl-P) showed a specific activity of approximately 20.0 U/mg, an estimated molecular mass of 63 kDa after sodium dodecyl sulfate polyacrylamide gel electrophoresis, and isoelectric point of 5.0 by isoelectric focusing. Sp-βgl-P has optimal activity at pH 4.0 and at 55 °C. It was stable in a broad pH range at low temperatures and it was tolerant to ethanol and glucose, indicating suitable properties for winemaking. The hydrolysis of glycosidic terpenes was analyzed by adding Sp-βgl-P directly to the wines. The released terpene compounds were evaluated by gas chromatography/mass spectrometry. The enzymatic treatment significantly increased the amount of free terpenes, suggesting that this enzyme could potentially be applicable in wine aroma improvement. © 2013 Springer Science+Business Media New York.
Resumo:
This study evaluated the ethanol addition as a strategy for start-up and acclimation of a pilot scale (1300 L) anaerobic sequencing batch biofilm reactor (AnSBBR) for the treatment of municipal landfill leachate with seasonal biodegradability variations. The treatment was carried out at ambient temperature (23.8 ± 2.1 °C) in the landfill area. In a first attempt, the leachate collected directly from landfill showed to be predominantly recalcitrant to anaerobic treatment and the acclimation was not possible. In a second attempt, adding ethanol to leachate, the reactor was successfully acclimated. After acclimation, without ethanol addition, the CODTotal influent ranged from 4970 to 13040 mg L-1 and the removal efficiencies ranged from 12.1% to 70.7%. A final test was carried out increasing the ammonia and free-ammonia concentration from 2486 mgN L-1 and 184 mgN L-1 to 4519 mgN L-1 and 634 mgN L-1, respectively, with no expressive inhibition verified. The start-up strategy was found to be feasible, providing the acclimation of the biomass in the AnSBBR, and maintaining the biomass active even when the leachate was recalcitrant. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Carbon-supported Pd, Au and bimetallic PdAu (Pd:Au 90:10, 50:50 and 30:70 atomic ratios) electrocatalysts were prepared using electron beam irradiation. The obtained materials were characterized by energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their catalytic activities toward ethanol electro-oxidation were evaluated in an alkaline medium using electrochemical techniques, in situ attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR) analysis and a single alkaline direct ethanol fuel cell (ADEFC). EDX analyses showed that the actual Pd: Au atomic ratios were very similar to the nominal ones. X-ray diffractograms of PdAu/C electrocatalysts evidenced the presence of Pd-rich (fcc) and Au-rich (fcc) phases. TEM analysis showed a homogeneous dispersion of nanoparticles on the carbon support, with an average size in the range of 3-5 nm and broad size distributions. Cyclic voltammetry (CV) and chronoamperometry (CA) experiments revealed the superior ambient activity toward ethanol electro-oxidation of PdAu/C electrocatalysts with Pd: Au ratios of 90:10 and 50:50. In situ ATR-FTIR spectroscopy measurements have shown that the mechanism for ethanol electro-oxidation is dependent on catalyst composition, leading to different reaction products, such as acetaldehyde and acetate, depending on the number of electrons transferred. Experiments on a single ADEFC were conducted between 50 and 900 C, and the best performance of 44 mW cm-2 in 2.0molL-1 ethanol was obtained at 850C for the Pd:Au 90:10 catalysts. This superior performance is most likely associated with enhancement of ethanol adsorption on Pd, oxidation of the intermediates, the presence of gold oxide-hydroxyl species, low mean particle diameters and better distribution of particles on the support. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Stillage is the main wastewater from ethanol production, containing a high chemical oxygen demand in addition to acidic and corrosive characteristics. Though stillage may be used as a soil fertilizer, its land application may be considered problematic due its high polluting potential. Anaerobic digestion represents an effective alternative treatment to reduce the pollution load of stillage. In addition, the methane gas produced within the process may be converted to energy, which can be directly applied to the treatment plant. The objective of this paper was to investigate the energetic potential of anaerobic digestion applied to stillage in the sugarcane ethanol industry. An overall analysis of the results indicates energy recovery capacity (ERC) values for methane ranging from 3.5% to 10%, respectively, for sugarcane juice and molasses. The processes employed to obtain the fermentable broth, as well as the distillation step, represent the main limiting factors to the energetic potential feasibility. Considering financial aspects the annual savings could reach up to US$ 30 million due to anaerobic digestion of stillage in relatively large-scale distilleries (365,000 m3 of ethanol per year). The best scenarios were verified for the association between anaerobic digestion of stillage and combustion of bagasse. In this case, the fossil fuels consumption in distilleries could be fully ceased, such the ERC of methane could reach values ranging from 140% to 890%. © 2013 Taylor & Francis.
Resumo:
Polyvinyl alcohol (PVA) microspheres with different degree of crystallinity were used as solid supports for Rhizomucor miehei lipase immobilization, and the enzyme-PVA complexes were used as biocatalysts for the transesterification of soybean oil to fatty acid ethyl esters (FAEE). The amounts of immobilized enzyme on the polymeric supports were similar for both the amorphous microspheres (PVA4) and the high crystalline microspheres (PVA25). However, the enzymatic activity of the immobilized enzymes was depended on the crystallinity degree of the PVA microspheres: enzymes immobilized on the PVA4 microspheres have shown low enzymatic activity (6.13 U mg-1), in comparison with enzymes immobilized on the high crystalline PVA25 microspheres (149.15 U mg-1). A synergistic effect was observed for the enzyme-PVA25 complex during the transesterification reaction of soybean oil to FAEE: transesterification reactions with free enzyme with the equivalent amount of enzyme that were immobilized onto the PVA25 microspheres (5.4 U) have yielded only 20% of FAEE, reactions with the pure highly crystalline microsphere PVA25 have not yielded FAEE, however reactions with the enzyme-PVA25 complexes have yielded 66.3% of FAEE. This synergistic effect of an immobilized enzyme on a polymeric support has not been observed before for transesterification reaction of triacylglycerides into FAEE. Based on ATR-FTIR, 23Na- and 13C-NMR-MAS spectroscopic data and the interaction of the polymeric network intermolecular hydrogen bonds with the lipases residual amino acids a possible explanation for this synergistic effect is provided. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This study was performed in order to determine the effect of the addition of different concentrations of glycerol and ethanol over functional and structural properties of zein-oleic acid films. Films were prepared from zein and oleic acid formulations, containing: 0, 10, 20 and 30% (w/w) of glycerol as plasticizer and 75, 80, 85, 90 and 95% (v/v) of ethanol as zein solvent. Water vapor permeability (WVP) at 4 and 24 C, opacity, water solubility and structural behavior of the film were assessed. The film water barrier properties, WVP and water solubility, were increased when higher ethanol concentration and lower glycerol concentration were used. Furthermore, WVP at 4 C was lower than WVP at 24 C due to the crystalline solid state of oleic acid at lower temperatures. Likewise, opacity, homogeneity and structure of the composite film were improved as ethanol increased and glycerol lowered. © 2013 Elsevier B.V. All rights reserved.
Resumo:
O objetivo deste ensaio clínico randomizado foi avaliar o comportamento clínico das restaurações adesivas, usando um adesivo convencional de três passos (CTP), um adesivo autocondicionante de um passo (AUP) e uma técnica simplificada da adesão úmida por etanol (AUET) antes da aplicação de uma resina composta em lesões cervicais não-cariosas. Noventa e três restaurações (31 para cada grupo) foram realizadas em 17 pacientes por um único operador. Nenhum preparo cavitário foi realizado. Depois de 6 e 12 meses, as restaurações foram avaliadas por 2 examinadores previamente treinados, utilizando critérios de Ryge modificados para retenção (kappa=1,00) e adaptação/manchamento marginal (kappa=0,81), e os resultados foram analisados pelos testes Exato de Fisher e Kruskal-Wallis, respectivamente. Não foram observadas diferenças significativas entre os grupos aos 6 e 12 meses para qualquer um dos critérios avaliados (p≥0,05). A análise intra-grupo feita pelos testes Q de Cochran (para retenção) e Wilcoxon (para adaptação/manchamento marginal) revelou diferenças significativas entre os intervalos de tempo baseline/12 meses para a adaptação marginal no AUP (p=0,0180) e manchamento marginal no CTP (p=0,0117). A análise de sobrevivência para o critério retenção realizada utilizando o teste de log-rank não apresentou diferenças significantes (p≥0,05). As restaurações feitas utilizando a técnica simplificada da adesão úmida por etanol comportaram-se igualmente às outras estratégias adesivas empregadas.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
BackgroundConditioned place preference (CPP) to ethanol (EtOH) is an important addiction-related alteration thought to be mediated by changed neurotransmission in the mesocorticolimbic brain pathway. Stress is a factor of major importance for the initiation, maintenance, and reinstatement of drug abuse and modulates the neurochemical outcomes of drugs. Thus, the aim of this study was to investigate the effects of concomitant exposure to chronic EtOH and stress on CPP to this drug and alterations of dopaminergic and serotonergic neurotransmission in mice.MethodsMale Swiss mice were chronically treated with EtOH via a liquid diet and were exposed to forced swimming stress. After treatment, animals were evaluated for conditioning, extinction, and reinstatement of CPP to EtOH. Also, mice exposed to the same treatment protocol had their prefrontal cortex (PFC), nucleus accumbens (NAc), and amygdala dissected for the quantitation of dopamine, serotonin, and their metabolites content.ResultsData showed that previous chronic exposure to EtOH potentiated EtOH conditioning and increased dopaminergic turnover in PFC. Exposure to stress potentiated EtOH conditioning and decreased dopaminergic turnover in the NAc. However, animals exposed to both chronic EtOH and stress did not display alterations of CPP and showed an elevated content of dopamine in amygdala. No treatment yielded serotonergic changes.ConclusionsThe present study indicates that previous EtOH consumption as well as stress exposure induces increased EtOH conditioning, which can be related to dopaminergic alterations in the PFC or NAc. Interestingly, concomitant exposure to both stimuli abolished each other's effect on conditioning and PFC or NAc alterations. This protective outcome can be related to the dopaminergic increase in the amygdala.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)