969 resultados para Esters.
Resumo:
We have investigated the gas-phase chemistry in dense cores where ice mantles containing ethanol and other alcohols have been evaporated. Model calculations show that methanol, ethanol propanol, and butanol drive a chemistry leading to the formation of several large ethers and esters. Of these molecules, methyl ethyl ether (CH3OC2H5) and diethyl ether [(C2H5)(2)O] attain the highest abundances and should be present in detectable quantities within cores rich in ethanol and methanol. Gas-phase reactions act to destroy evaporated ethanol and a low observed abundance of gas-phase C2H5OH does not rule out a high solid-phase abundance. Grain surface formation mechanisms and other possible gas-phase reactions driven by alcohols are discussed, as are observing strategies for the detection of these large interstellar molecules.
Resumo:
Efficient control of the illegal use of anabolic steroids must both take into account metabolic patterns and associated kinetics of elimination; in this context, an extensive animal experiment involving 24 calves and consisting of three administrations of 17 beta-estradiol 3-benzoate and 17 beta-nandrolone laureate esters was carried out over 50 days. Urine samples were regularly collected during the experiment from all treated and non-treated calves. For sample preparation, a single step high throughput protocol based on 96-well C-18 SPE was developed and validated according to the European Decision 2002/657/EC requirements. Decision limits (CC alpha) for steroids were below 0.1 mu g L-1, except for 19-norandrosterone (CC alpha = 0.7 mu g L-1) and estrone (CC alpha = 0.3 mu g L-1). Kinetics of elimination of the administered 17 beta-estradiol 3-benzoate and 17 beta-nandrolone laureate were established by monitoring 17 beta-estradiol, 17 alpha-estradiol, estrone and 17 beta-nandrolone, 17 alpha-nandrolone, 19-noretiocholanolone, 19-norandrostenedione, respectively. All animals demonstrated homogeneous patterns of elimination both from a qualitative (metabolite profile) and quantitative point of view (elimination kinetics in urine). Most abundant metabolites were 17 alpha-estradiol and 17 alpha-nandrolone (> 20 and 2 mg L-1, respectively after 17 beta-estradiol 3-benzoate and 17 beta-nandrolone laureate administration) whereas 17 beta-estradiol, estrone, 17 beta-nandrolone, 19-noretiocholanolone and 19-norandrostenedione were found as secondary metabolites at concentration values up to the mu g L-1 level. No significant difference was observed between male and female animals. The effect of several consecutive injections on elimination profiles was studied and revealed a tendency toward a decrease in the biotransformation of administered steroid 17 beta form. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We have developed a new technique for quantifying methionine sulfoxide (MetSO) in protein to assess levels of oxidative stress in physiological systems. In this procedure, samples are hydrolyzed with methanesulfonic acid (MSA) in order to avoid the conversion of MetSO to methionine (Met) that occurs during hydrolysis of protein in HCl. The hydrolysate is fractionated on a cation exchange column to remove the nonvolatile MSA from amino acids, and the amino acids are then derivatized as their trimethylsilyl esters for analysis by selected ion monitoring-gas chromatography/mass spectrometry. The limit of detection of the assay is 200 pmol of MetSO per analysis, and the interassay coefficient of variation is 5.8%. Compared to current methods, the SIM-GC/MS assay avoids the potential for conversion of Met to MetSO during sample preparation, requires less sample preparation time, has lower variability, and uses mass spectrometry for sensitive and specific analyte detection.
Resumo:
The very low- and low-density lipoprotein fractions were isolated from 16 normolipidaemic Type 2 (non-insulin-dependent) diabetic patients in good to fair glycaemic control and from corresponding age-, sex-, and race-matched, non-diabetic control subjects. Rates of cholesteryl ester synthesis averaged 268 +/- 31 vs 289 +/- 40 pmol 14C-cholesteryl oleate.mg cell protein-1.20 h-1 for very low- and 506 +/- 34 vs 556 +/- 51 pmol 14C-cholesteryl oleate.mg cell protein-1.20 h-1 for low-density lipoproteins isolated from the Type 2 diabetic patients and control subjects, respectively, when they were incubated with human macrophages. A group of approximately one-third of the patients was selected for separate analyses because very low-density lipoproteins isolated from these patients did stimulate more cholesteryl ester synthesis when incubated with macrophages. There were no significant differences in the lipid composition of the lipoproteins isolated from the three groups of subjects. The relative proportion of apoprotein C to apoprotein E was significantly decreased (p less than 0.002) in the very low-density lipoproteins from diabetic patients and was further decreased in samples from these selected diabetic patients. The apoprotein C-I content of very low-density lipoproteins isolated from diabetic patients was increased compared to control subjects and was further increased in samples from the selected diabetic patients (p less than 0.02). There were no significant differences in the proportions of apoproteins C-III-0, C-III-1, or C-III-2 among the three groups. These studies suggest that in normolipidaemic Type 2 diabetic patients, the apoprotein composition of VLDL is abnormal and this may alter VLDL macrophage interactions and thus contribute to the increased prevalence of atherosclerosis in diabetic patients.
Resumo:
Very-low-density lipoproteins (VLDL) (density less than 1.006 g/mL) were isolated from type I (insulin-dependent) diabetic patients in good to fair glycemic control and from age-, sex-, and race-matched, nondiabetic, control subjects. VLDL were incubated with human, monocyte-derived macrophages obtained from nondiabetic donors, and the rates of cellular cholesteryl ester synthesis and cholesterol accumulation were determined. VLDL isolated from diabetic patients stimulated significantly more cholesteryl ester synthesis than did VLDL isolated from control subjects (4.04 +/- 1.01 v 1.99 +/- 0.39 nmol 14C-cholesteryl oleate synthesized/mg cell protein/20 h; mean +/- SEM, P less than .05). The stimulation of cholesteryl ester synthesis in macrophages incubated with VLDL isolated from diabetic patients was paralleled by a significant increase in intracellular cholesteryl ester accumulation (P less than .05). The increase in cholesteryl ester synthesis and accumulation in macrophages were mediated by a significant increase in the receptor mediated, high affinity degradation (2.55 +/- 0.23 v 2.12 +/- 0.20 micrograms degraded/mg cell protein/20 h) and accumulation (283 +/- 35 v 242 +/- 33 ng/mg cell protein/20 h) of 125I-VLDL isolated from diabetic patients compared with VLDL from control subjects. To determine if changes in VLDL apoprotein composition were responsible for the observed changes in cellular rates of cholesteryl ester synthesis and accumulation, we also examined the apoprotein composition of the VLDL from both groups. There were no significant differences between the apoproteins B, E, and C content of VLDL from both groups. We also determined the chemical composition of VLDL isolated from both groups of subjects.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Glucose can react with the lysine residues of low-density lipoproteins (LDLs) and convert the lipoprotein to a form with a receptor-mediated uptake by cultured cells that is impaired. However, in contrast to other modified lipoproteins taken up by both murine and human macrophages via the scavenger-receptor pathway that may induce the formation of foam cells, glycosylated LDL is not recognized by murine macrophages, and thus far, it has not been shown to lead to marked intracellular accumulation of cholesterol in human macrophages. This study illustrates that glycosylated LDL incubated with human monocyte-derived macrophages, at a concentration of 100 micrograms LDL/ml medium, stimulates significantly more cholesteryl ester (CE) synthesis than does control LDL (10.65 +/- 1.5 vs. 4.8 +/- 0.13 nmol.mg-1 cell protein.20 h-1; P less than .05). At LDL concentrations similar to those of plasma, the rate of CE synthesis in macrophages incubated with glycosylated LDL is more markedly enhanced than that observed in cells incubated with control LDL (3-fold increase). The marked stimulation of CE synthesis in human macrophages exposed to glycosylated LDL is paralleled by a significant increase in CE accumulation in these cells (P less than .001). The increase in CE synthesis and accumulation seem to be mediated by an increase in the degradation of glycosylated LDL by human macrophages. Glycosylated LDL enters the macrophages and is degraded by the classic LDL-receptor pathway in slightly smaller amounts than control LDL, but its degradation by pathways other than the classic LDL receptor or scavenger receptor is markedly enhanced.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Diabetes mellitus is an independent risk factor in the development of atherosclerosis. In this study we aimed to demonstrate whether there is an abnormal interaction between low-density lipoproteins from diabetic patients and human macrophages. We measured cholesteryl ester synthesis and cholesteryl ester accumulation in human monocyte-derived macrophages (obtained from non-diabetic donors) incubated with low density lipoproteins from Type 1 (insulin-dependent) diabetic patients in good or fair glycaemic control. Low density lipoproteins from the diabetic patients stimulated more cholesteryl ester synthesis than low density lipoproteins from non-diabetic control subjects (7.19 +/- 1.19 vs 6.11 +/- 0.94 nmol/mg cell protein/20 h, mean +/- SEM, p less than 0.05). The stimulation of cholesteryl ester synthesis by low density lipoproteins isolated from diabetic patients was paralleled by a significant increase in intracellular cholesteryl ester accumulation (p less than 0.02). There were no significant differences in the lipid composition of low density lipoproteins between the diabetic and control groups. Non-enzymatic glycosylation of low density lipoproteins was higher in the diabetic group (p less than 0.01) and correlated significantly with cholesteryl ester synthesis (r = 0.58). Similarly, low-density lipoproteins obtained from non-diabetic subjects and glycosylated in vitro stimulated more cholesteryl ester synthesis in macrophages than control low density lipoproteins. The increase in cholesteryl ester synthesis and accumulation by cells exposed to low density lipoproteins from diabetic patients seems to be mediated by an increased uptake of these lipoproteins by macrophages.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Two novel mutations were identified in a compound heterozygous male with lecithin:cholesterol acyltransferase (LCAT) deficiency. Exon sequence determination of the LCAT gene of the proband revealed two novel heterozygous mutations in exons one (C110T) and six (C991T) that predict non-conservative amino acid substitutions (Thr13Met and Pro307Ser, respectively). To assess the distinct functional impact of the separate mutant alleles, studies were conducted in the proband's 3-generation pedigree. The compound heterozygous proband had negligible HDL and severely reduced apolipoprotein A-I, LCAT mass, LCAT activity, and cholesterol esterification rate (CER). The proband's mother and two sisters were heterozygous for the Pro307Ser mutation and had low HDL, markedly reduced LCAT activity and CER, and the propensity for significant reductions in LCAT protein mass. The proband's father and two daughters were heterozygous for the Thr13Met mutation and also displayed low HDL, reduced LCAT activity and CER, and more modest decrements in LCAT mass. Mean LCAT specific activity was severely impaired in the compound heterozygous proband and was reduced by 50% in individuals heterozygous for either mutation, compared to wild type family members. It is also shown that the two mutations impair both catalytic activity and expression of the circulating protein.
Resumo:
Suitable ester prodrugs of 17b-estradiol are identified, thus permitting effective sustained and controlled estrogen replacement therapy (ERT) from an elastomeric, silicone intravaginal ring (IVR). IVR devices of reservoir design were prepared by blending silicone elastomer base with n-propylorthosilicate (cross-linker) and 10% w/w of 17b-estradiol or an ester prodrug, the mix being activated with 0.5% w/w stannous octoate and cured at 808C for 2 min. A rate-controlling membrane was similarly prepared, without the active agent. IVR devices were of cross-sectional diameter 9 mm, outer diameter 54 mm, with core cross-sectional diameter of 2 mm and core length varied as required. Sink conditions were evident for the 17b-estradiol esters in 1.0% aqueous benzalkonium chloride solution. The low release rates into 0.9% w/v saline of the lipophilic valerate and benzoate esters were due to their intrinsically low aqueous solubilities. In vivo, these esters failed to raise plasma estradiol above baseline levels in postmenopausal human volunteers, despite good in vitro release characteristics under sink conditions. The best release rates under sink conditions, in combination with substantial aqueous solubilities as indicated by the release rates into saline, were observed for the acetate and propionate esters. A
combination of drug release characteristics, short plasma half-life and a toxicologically acceptable hydrolysis product indicated that 17b-estradiol-3-acetate was the prodrug of choice for IVR delivery of ERT. In vivo, an IVR device releasing
100 mg/day of estradiol as its 3-acetate ester maintained over 84 days a circulating plasma concentration in the region of 300 pmol l , within the clinically desirable range for ERT.
Resumo:
The original 1967 Richardson–Hough rules for predicting SN2 displacement viability in carbohydrate sulfonate derivatives with external nucleophiles have now been updated. Not only do the original rules still hold, but the newly updated rules rationalize why O-triflates (trifluoromethanesulfonate esters) frequently allow many seemingly “disallowed” pyranosidic nucleophilic substitutions to proceed. The new guidelines, which are based on three decades of experimental evidence, allow the feasibility of many pyranosidic O-triflate SN2 displacements to be gauged beforehand.
Resumo:
Monocyclic allylic cis-1,2-diols reacted with sulfuryl chloride at 0 °C in a regio- and stereo-selective manner to give 2-chloro-1-sulfochloridates, which were hydrolysed to yield the corresponding trans-1,2-chlorohydrins. At −78 °C, with very slow addition of sulfuryl chloride, cyclic sulfates were formed in good yields, proved to be very reactive with nucleophiles and rapidly decomposed on attempted storage. Reaction of a cyclic sulfate with sodium azide yielded a trans-azidohydrin without evidence of allylic rearrangement occurring. An enantiopure bicyclic cis-1,2-diol reacted with sulfuryl chloride to give, exclusively, a trans-1,2-dichloride enantiomer with retention of configuration at the benzylic centre and inversion at the non-benzylic centre; a mechanism is presented to rationalise the observation.
Resumo:
Metallo-azomethine ylides, generated from imines by the action of amine bases in combination with LiBr or AgOAc, undergo cycloaddition with both 1R, 2S, 5R- and 1S, 2R, 5S-menthyl acrylate at room temperature to give homochiral pyrrolidines in excellent yield. The stronger the base the faster the cycloaddition and the greater the yield with: 2-t-butyl-1,1,3,3-tetramethylguanidine > DBU > NEt(3) X-Ray crystal structures of representative cycloadducts establish that the absolute configuration of the newly established pyrrolidine stereocentres is independent of the metal salt and the size of the pyrrolidineC(2)-substituent for a series of aryl and aliphatic imines.
Resumo:
Two ionic liquids, 1-ethylpyridinium docusate (IL1) and tri-n-butyl(2-hydroxyethyl)phosphonium docusate (IL2), were designed and synthesized with the explicit intention of imparting a combination of plasticization and antimicrobial efficacy when incorporated into medical grade poly(vinyl chloride)s (PVCs). The glass transition (T-g) of PVC can be reduced by >20 degrees C on addition of 15 wt% IL2. Both IL1 and IL2 leached to varying extents from the base PVC resins rendering the surface of the PVCs hydrophilic. The antimicrobial activity of both ILs is related to the presence and concentration of both cationic and anionic component of the ILs leached from the PVC and inversely proportional to the extent of PVC gelation. Blends of the PVCs with IL1 displayed antibacterial activity against almost all Gram-positive bacteria tested, including coagulase-negative Staphylococci (CoNS) and methicillin-resistant Staphylococcus aureus (MRSA), but not with IL2 at low concentration in contrast to our previous study when high concentrations of IL2 were used. The more hydrophilic IL1 when added to PVC retards biofilm formation.
Resumo:
The kinetics of hydrodeoxygenation of waste cooking oil (WCO) is investigated with unsupported CoMoS catalysts. A kinetic model is established and a comprehensive analysis of each reaction pathway is carried out. The results show that hydrodecarbonylation/decarboxylation (HDC) routes are the predominant reaction pathways in the elimination of oxygen, with the rate constant three times as high as that of hydrodeoxygenation (HDO). However, the HDC activity of the CoMoS catalyst deactivates due to gradual loss of sulfur from the catalyst. HDO process is insensitive to the sulfur deficiency. The kinetic modeling shows that direct hydrodecarbonylation of fatty acids dominates the HDC routes and, in the HDO route, fatty acids are transferred to aldehydes/alcohols and then to C-18 hydrocarbons, a final product, and the reduction of acids is the rate limiting step. The HDO route via alcohols is dominant over aldehydes due to a significantly higher reaction rate constant. The difference of C-18/C-17 ratio in unsupported and supported catalysts show that a support with Lewis acid sites may play an important role in the selectivity for the hydrodeoxygenation pathways and promoting the final product quality
Resumo:
The use of a hydrated phosphonium ionic liquid, [P(CH<inf>2</inf>OH)<inf>4</inf>]Cl, for the extraction of microalgæ lipids for biodiesel production, was evaluated using two microalgæ species, Chlorella vulgaris and Nannochloropsis oculata. The ionic liquid extraction was compared to the conventional Soxhlet, and Bligh & Dyer, methods, giving the highest extraction efficiency in the case of C. vulgaris, at 8.1%. The extraction from N. oculata achieved the highest lipid yield for Bligh & Dyer (17.3%), while the ionic liquid extracted 12.8%. Nevertheless, the ionic liquid extraction showed high affinity to neutral/saponifiable lipids, resulting in the highest fatty acid methyl esters (FAMEs)-biodiesel yield (4.5%) for C. vulgaris. For N. oculata, the FAMEs yield of the ionic liquid and Bligh & Dyer extraction methods were similar (>8%), and much higher than for Soxhlet (<5%). The ionic liquid extraction proved especially suitable for lipid extraction from wet biomass, giving even higher extraction yields than from dry biomass, 14.9% and 12.8%, respectively (N. oculata). Remarkably, the overall yield of FAMEs was almost unchanged, 8.1% and 8.0%, for dry and wet biomass. The ionic liquid extraction process was also studied at ambient temperature, varying the extraction time, giving 75% of lipid and 93% of FAMEs recovery after thirty minutes, as compared to the extraction at 100 °C for one day. The recyclability study demonstrated that the ionic liquid was unchanged after treatment, and was successfully reused. The ionic liquid used is best described as [P(CH<inf>2</inf>OH)<inf>4</inf>]Cl·2H<inf>2</inf>O, where the water is not free, but strongly bound to the ions.