958 resultados para Equação de Euler
Resumo:
Moving mesh methods (also called r-adaptive methods) are space-adaptive strategies used for the numerical simulation of time-dependent partial differential equations. These methods keep the total number of mesh points fixed during the simulation, but redistribute them over time to follow the areas where a higher mesh point density is required. There are a very limited number of moving mesh methods designed for solving field-theoretic partial differential equations, and the numerical analysis of the resulting schemes is challenging. In this thesis we present two ways to construct r-adaptive variational and multisymplectic integrators for (1+1)-dimensional Lagrangian field theories. The first method uses a variational discretization of the physical equations and the mesh equations are then coupled in a way typical of the existing r-adaptive schemes. The second method treats the mesh points as pseudo-particles and incorporates their dynamics directly into the variational principle. A user-specified adaptation strategy is then enforced through Lagrange multipliers as a constraint on the dynamics of both the physical field and the mesh points. We discuss the advantages and limitations of our methods. The proposed methods are readily applicable to (weakly) non-degenerate field theories---numerical results for the Sine-Gordon equation are presented.
In an attempt to extend our approach to degenerate field theories, in the last part of this thesis we construct higher-order variational integrators for a class of degenerate systems described by Lagrangians that are linear in velocities. We analyze the geometry underlying such systems and develop the appropriate theory for variational integration. Our main observation is that the evolution takes place on the primary constraint and the 'Hamiltonian' equations of motion can be formulated as an index 1 differential-algebraic system. We then proceed to construct variational Runge-Kutta methods and analyze their properties. The general properties of Runge-Kutta methods depend on the 'velocity' part of the Lagrangian. If the 'velocity' part is also linear in the position coordinate, then we show that non-partitioned variational Runge-Kutta methods are equivalent to integration of the corresponding first-order Euler-Lagrange equations, which have the form of a Poisson system with a constant structure matrix, and the classical properties of the Runge-Kutta method are retained. If the 'velocity' part is nonlinear in the position coordinate, we observe a reduction of the order of convergence, which is typical of numerical integration of DAEs. We also apply our methods to several models and present the results of our numerical experiments.
Resumo:
Neste trabalho, é apresentada uma formulação apropriada à análise de guias de ondas eletromagnéticos, cobrindo do espectro de microondas até o da óptica. Nas regiões a partir do ultravioleta, os comprimentos de onda são equivalentes às dimensões atômicas e a formulação necessita de uma abordagem quântica, que não é considerada neste estudo. A formulação é fundamentada nos métodos vetorial magnético e dos elementos finitos (MEF), em meios não homogêneos, anisotrópicos e não dissipativos, embora a dissipação possa ser facilmente introduzida na análise. Deu-se preferência à formulação com o campo magnético em vez do elétrico, pelo fato do campo magnético ignorar descontinuidades elétricas. Ele é contínuo em regiões de permeabilidade homogênea, propriedade dos meios dielétricos em geral ( = 0), independente da permissividade dos respectivos meios, conquanto os campos elétricos sejam descontínuos entre regiões de permissividades diferentes.
Resumo:
A viscosimetria é um procedimento experimental simples e pouco oneroso, que pode fornecer informações valiosas sobre o volume hidrodinâmico e a conformação de macromoléculas em solução, num determinado solvente, em uma dada temperatura. Os parâmetros viscosimétricos podem ser matematicamente calculados por extrapolação gráfica, cuja execução experimental é mais demorada. Em contrapartida, é possível que a determinação seja feita por um único ponto. Neste trabalho, os dois métodos de cálculo, empregando uma série de seis equações: Huggins, Kraemer e Schulz-Blaschke, por extrapolação gráfica, e Schulz-Blaschke, Solomon-Ciuta e Deb-Chanterjee por um único ponto, foram utilizados em soluções de poli(glicol propilênico) (PPG) e copolímeros em bloco à base de poli(glicol propilênico) e poli(glicol etilênico) (EG-b-PG), com diferentes teores de poli(glicol etilênico), tendo isopropanol, tetra-hidrofurano (THF) e tolueno como solventes puros, além das misturas em proporções iguais de THF/ isopropanol e THF/ tolueno, a 25C. Os valores de viscosidade intrínseca e de algumas constantes indicaram que os solventes puros e as misturas se apresentaram no limite entre o bom e o mau solvente. Verificou-se também que o método de cálculo por um único ponto foi válido, especialmente quando a equação de Schulz-Blaschke foi empregada, apresentando um baixo percentual de erro sendo possível assim reduzir o tempo de análise para a maioria dos sistemas estudados
Resumo:
Desenvolvemos nesta dissertação um método híbrido direto para o cálculo do fator de desvantagem e descrição da distribuição do fluxo de nêutrons em sistemas combustível-moderador. Na modelagem matemática, utilizamos a equação de transporte de Boltzmann independente do tempo, considerando espalhamento linearmente anisotrópico no modelo monoenergético e espalhamento isotrópico no modelo multigrupo, na formulação de ordenadas discretas (SN), em geometria unidimensional. Desenvolvemos nesta dissertação um método híbrido direto para o cálculo do fator de desvantagem e descrição da distribuição do fluxo de nêutrons em sistemas combustível-moderador. Na modelagem matemática, utilizamos a equação de transporte de Boltzmann independente do tempo, considerando espalhamento linearmente anisotrópico no modelo monoenergético e espalhamento isotrópico no modelo multigrupo, na formulação de ordenadas discretas (SN), em geometria unidimensional. Descrevemos uma análise espectral das equações de ordenadas discretas (SN)a um grupo e a dois grupos de energia, onde seguimos uma analogia com o método de Case. Utilizamos, neste método, quadraturas angulares diferentes no combustível (NC) e no moderador (NM), onde em geral assumimos que NC > NM . Condições de continuidade especiais que acoplam os fluxos angulares que emergem do combustível (moderador) e incidem no moderador (combustível), foram utilizadas com base na equivalência entre as equações SN e PN-1, o que caracteriza a propriedade híbrida do modelo proposto. Sendo um método híbrido direto, utilizamos as NC + NM equações lineares e algébricas constituídas pelas (NC + NM)/2 condições de contorno reflexivas e (NC + NM)/2 condições de continuidade para determinarmos as NC + NM constantes. Com essas constantes podemos calcular os valores dos fluxos angulares e dos fluxos escalares em qualquer ponto do domínio. Apresentamos resultados numéricos para ilustrar a eficiência e a precisão do método proposto.
Resumo:
We approach the problem of automatically modeling a mechanical system from data about its dynamics, using a method motivated by variational integrators. We write the discrete Lagrangian as a quadratic polynomial with varying coefficients, and then use the discrete Euler-Lagrange equations to numerically solve for the values of these coefficients near the data points. This method correctly modeled the Lagrangian of a simple harmonic oscillator and a simple pendulum, even with significant measurement noise added to the trajectories.
Resumo:
The use of transmission matrices and lumped parameter models for describing continuous systems is the subject of this study. Non-uniform continuous systems which play important roles in practical vibration problems, e.g., torsional oscillations in bars, transverse bending vibrations of beams, etc., are of primary importance.
A new approach for deriving closed form transmission matrices is applied to several classes of non-uniform continuous segments of one dimensional and beam systems. A power series expansion method is presented for determining approximate transmission matrices of any order for segments of non-uniform systems whose solutions cannot be found in closed form. This direct series method is shown to give results comparable to those of the improved lumped parameter models for one dimensional systems.
Four types of lumped parameter models are evaluated on the basis of the uniform continuous one dimensional system by comparing the behavior of the frequency root errors. The lumped parameter models which are based upon a close fit to the low frequency approximation of the exact transmission matrix, at the segment level, are shown to be superior. On this basis an improved lumped parameter model is recommended for approximating non-uniform segments. This new model is compared to a uniform segment approximation and error curves are presented for systems whose areas very quadratically and linearly. The effect of varying segment lengths is investigated for one dimensional systems and results indicate very little improvement in comparison to the use of equal length segments. For purposes of completeness, a brief summary of various lumped parameter models and other techniques which have previously been used to approximate the uniform Bernoulli-Euler beam is a given.
Resumo:
Faz-se uma revisão do problema da dimensionalidade do espaço entendido como um problema de Física, enfatizando que algumas leis físicas dependem fortemente deste parâmetro topológico do espaço. Discute-se o que já foi feito tanto no caso da equação de Schrödinger quanto na de Dirac. A situação na literatura é bastante controversa e, no caso específico da equação de Dirac em D dimensões, não se encontra nenhum trabalho na literatura científica que leve em conta o potencial de intera coulombiana corretamente generalizado quando o número de dimensões espaciais é maior do que três. Discute-se, portanto, o átomo de hidrogênio relativístico em D dimensões. Novos resultados numéricos para os níveis de energia e para as funções de onda são apresentados e discutidos. Em particular, considera-se a possibilidade de existência de átomos estáveis em espaços com dimensionalidade 6= 3.
Resumo:
Jet noise reduction is an important goal within both commercial and military aviation. Although large-scale numerical simulations are now able to simultaneously compute turbulent jets and their radiated sound, lost-cost, physically-motivated models are needed to guide noise-reduction efforts. A particularly promising modeling approach centers around certain large-scale coherent structures, called wavepackets, that are observed in jets and their radiated sound. The typical approach to modeling wavepackets is to approximate them as linear modal solutions of the Euler or Navier-Stokes equations linearized about the long-time mean of the turbulent flow field. The near-field wavepackets obtained from these models show compelling agreement with those educed from experimental and simulation data for both subsonic and supersonic jets, but the acoustic radiation is severely under-predicted in the subsonic case. This thesis contributes to two aspects of these models. First, two new solution methods are developed that can be used to efficiently compute wavepackets and their acoustic radiation, reducing the computational cost of the model by more than an order of magnitude. The new techniques are spatial integration methods and constitute a well-posed, convergent alternative to the frequently used parabolized stability equations. Using concepts related to well-posed boundary conditions, the methods are formulated for general hyperbolic equations and thus have potential applications in many fields of physics and engineering. Second, the nonlinear and stochastic forcing of wavepackets is investigated with the goal of identifying and characterizing the missing dynamics responsible for the under-prediction of acoustic radiation by linear wavepacket models for subsonic jets. Specifically, we use ensembles of large-eddy-simulation flow and force data along with two data decomposition techniques to educe the actual nonlinear forcing experienced by wavepackets in a Mach 0.9 turbulent jet. Modes with high energy are extracted using proper orthogonal decomposition, while high gain modes are identified using a novel technique called empirical resolvent-mode decomposition. In contrast to the flow and acoustic fields, the forcing field is characterized by a lack of energetic coherent structures. Furthermore, the structures that do exist are largely uncorrelated with the acoustic field. Instead, the forces that most efficiently excite an acoustic response appear to take the form of random turbulent fluctuations, implying that direct feedback from nonlinear interactions amongst wavepackets is not an essential noise source mechanism. This suggests that the essential ingredients of sound generation in high Reynolds number jets are contained within the linearized Navier-Stokes operator rather than in the nonlinear forcing terms, a conclusion that has important implications for jet noise modeling.
Resumo:
报道了基于双面反射镜的N×N光开关器件。介绍了使用双面反射镜的2×2, 4×4光开关的集成光路设计和工作原理; 采用Benes网络, 以2×2和4×4光开关为基本单元的N×N光开关器件的整体结构, 并根据“一笔画”原理, 分析了4×4, 8×8和16×16光开关矩阵的可重排无阻塞特性和光开关矩阵的光路选择算法。最后, 基于2×2, 4×4光开关技术制备了16×16光开关矩阵。测试表明, 该器件具有良好的插入损耗、回波损耗、串扰和开关时间等性能, 从而验证了设计思想和工艺的可行性。在基于双面反射镜的光开关矩
Resumo:
O esquema iterativo de fonte de espalhamento (SI) é tradicionalmente aplicado para a convergência da solução numérica de malha fina para problemas de transporte de nêutrons monoenergéticos na formulação de ordenadas discretas com fonte fixa. O esquema SI é muito simples de se implementar sob o ponto de vista computacional; porém, o esquema SI pode apresentar taxa de convergência muito lenta, principalmente para meios difusivos (baixa absorção) com vários livres caminhos médios de extensão. Nesta dissertação descrevemos uma técnica de aceleração baseada na melhoria da estimativa inicial para a distribuição da fonte de espalhamento no interior do domínio de solução. Em outras palavras, usamos como estimativa inicial para o fluxo escalar médio na grade de discretização de malha fina, presentes nos termos da fonte de espalhamento das equações discretizadas SN usadas nas varreduras de transporte, a solução numérica da equação da difusão de nêutrons em grade espacial de malha grossa com condições de contorno especiais, que aproximam as condições de contorno prescritas que são clássicas em cálculos SN, incluindo condições de contorno do tipo vácuo. Para aplicarmos esta solução gerada pela equação da difusão em grade de discretização de malha grossa nas equações discretizadas SN de transporte na grade de discretização de malha fina, primeiro implementamos uma reconstrução espacial dentro de cada nodo de discretização, e então determinamos o fluxo escalar médio em grade de discretização de malha fina para usá-lo nos termos da fonte de espalhamento. Consideramos um número de experimentos numéricos para ilustrar a eficiência oferecida pela presente técnica (DSA) de aceleração sintética de difusão.
Resumo:
O presente trabalho aborda um problema inverso associado a difus~ao de calor em uma barra unidimensional. Esse fen^omeno e modelado por meio da equac~ao diferencial par- cial parabolica ut = uxx, conhecida como equac~ao de difus~ao do calor. O problema classico (problema direto) envolve essa equac~ao e um conjunto de restric~oes { as condic~oes inicial e de contorno {, o que permite garantir a exist^encia de uma soluc~ao unica. No problema inverso que estudamos, o valor da temperatura em um dos extremos da barra n~ao esta disponvel. Entretanto, conhecemos o valor da temperatura em um ponto x0 xo no interior da barra. Para aproximar o valor da temperatura no intervalo a direita de x0, propomos e testamos tr^es algoritmos de diferencas nitas: diferencas regressivas, leap-frog e diferencas regressivas maquiadas.
Resumo:
Um método numérico nodal livre de erros de truncamento espacial é desenvolvido para problemas adjuntos de transporte de partículas neutras monoenergéticas em geometria unidimensional com fonte fixa na formulação de ordenadas discretas (SN). As incógnitas no método são os fluxos angulares adjuntos médios nos nodos e os fluxos angulares adjuntos nas fronteiras dos nodos, e os valores numéricos gerados para essas quantidades são os obtidos a partir da solução analítica das equações SN adjuntas. O método é fundamentado no uso da convencional equação adjunta SN discretizada de balanço espacial, que é válida para cada nodo de discretização espacial e para cada direção discreta da quadratura angular, e de uma equação auxiliar adjunta não convencional, que contém uma função de Green para os fluxos angulares adjuntos médios nos nodos em termos dos fluxos angulares adjuntos emergentes das fronteiras dos nodos e da fonte adjunta interior. Resultados numéricos são fornecidos para ilustrarem a precisão do método proposto.
Resumo:
A Bacia de São José de Itaboraí está localizada no Município de Itaboraí, no Estado do Rio de Janeiro. Ela foi descoberta em 1928, pelo Engenheiro Carlos Euler, que após analisar um suposto caulim encontrado na Fazenda São José pelo seu então proprietário, Sr. Ernesto Coube, verificou que se tratava de calcário. Os Professores Rui Lima e Silva e Othon H. Leonardos, enviados ao local para estudos, encontraram uma grande quantidade de fósseis de gastrópodes continentais, despertando o interesse científico pela região. Os estudos preliminares de campo e análises químicas evidenciaram boas perspectivas de exploração do calcário para a fabricação de cimento do tipo Portland. Por mais de 50 anos, a Companhia Nacional de Cimento Portland Mauá (CNCPM) explorou a pedreira. Desde sua descoberta, a Bacia de São José, paralelamente às atividades de mineração, foi objeto de pesquisas científicas realizadas por geólogos, paleontólogos e arqueólogos. No início da década de 80, a Cia. de Cimento Mauá decidiu abandonar a área em função do esgotamento econômico da reserva de minério. Com a retirada das bombas que impediam a inundação da pedreira, formou-se uma lagoa que passou a impedir o livre acesso aos afloramentos. Desde então as pesquisas sobre a Bacia ficaram concentradas aos materiais coletados no período de exploração de calcário. Material esse distribuído no Museu Nacional (MN), Departamento Nacional da Produção Mineral (DNPM), Instituto de Geociências da UFRJ, entre outros. Em 1990, a área que pertencia a CNCPM foi desapropriada por pressão da comunidade científica. A mesma passou a pertencer ao Município de Itaboraí, que criou o Parque Paleontológico de São José de Itaboraí, por meio da Lei 1.346, de 12 de dezembro de 1995. O objetivo desse trabalho foi gerar novos dados através do método geofísico conhecido como magnetometria. Para isso foram realizados levantamentos de campo utilizando um magnetômetro portátil e GPS, foram analisados e corrigidos dados utilizando softwares específicos, elaborados modelos e criados perfis a partir de descrições de testemunhos de sondagem. Os resultados obtidos visam possibilitar uma nova interpretação da geologia e da estratigrafia da bacia, dando condições para que se possa ter uma atualização dos conhecimentos relacionados à região, após quase meio século de atividade mineradora.
Resumo:
Neste trabalho, três técnicas para resolver numericamente problemas inversos de transporte de partículas neutras a uma velocidade para aplicações em engenharia nuclear são desenvolvidas. É fato conhecido que problemas diretos estacionários e monoenergéticos de transporte são caracterizados por estimar o fluxo de partículas como uma função-distribuição das variáveis independentes de espaço e de direção de movimento, quando os parâmetros materiais (seções de choque macroscópicas), a geometria, e o fluxo incidente nos contornos do domínio (condições de contorno), bem como a distribuição de fonte interior são conhecidos. Por outro lado, problemas inversos, neste trabalho, buscam estimativas para o fluxo incidente no contorno, ou a fonte interior, ou frações vazio em barras homogêneas. O modelo matemático usado tanto para os problemas diretos como para os problemas inversos é a equação de transporte independente do tempo, a uma velocidade, em geometria unidimensional e com o espalhamento linearmente anisotrópico na formulação de ordenadas discretas (SN). Nos problemas inversos de valor de contorno, dado o fluxo emergente em um extremo da barra, medido por um detector de nêutrons, por exemplo, buscamos uma estimativa precisa para o fluxo incidente no extremo oposto. Por outro lado, nos problemas inversos SN de fonte interior, buscamos uma estimativa precisa para a fonte armazenada no interior do domínio para fins de blindagem, sendo dado o fluxo emergente no contorno da barra. Além disso, nos problemas inversos SN de fração de vazio, dado o fluxo emergente em uma fronteira da barra devido ao fluxo incidente prescrito no extremo oposto, procuramos por uma estimativa precisa da fração de vazio no interior da barra, no contexto de ensaios não-destrutivos para aplicações na indústria. O código computacional desenvolvido neste trabalho apresenta o método espectronodal de malha grossa spectral Greens function (SGF) para os problemas diretos SN em geometria unidimensional para gerar soluções numéricas precisas para os três problemas inversos SN descritos acima. Para os problemas inversos SN de valor de contorno e de fonte interior, usamos a propriedade da proporcionalidade da fuga de partículas; ademais, para os problemas inversos SN de fração de vazio, oferecemos a técnica a qual nos referimos como o método físico da bissecção. Apresentamos resultados numéricos para ilustrar a precisão das três técnicas, conforme descrito nesta tese.
Resumo:
Neste trabalho, foi desenvolvido um simulador numérico baseado no método livre de malhas Smoothed Particle Hydrodynamics (SPH) para a resolução de escoamentos de fluidos newtonianos incompressíveis. Diferentemente da maioria das versões existentes deste método, o código numérico faz uso de uma técnica iterativa na determinação do campo de pressões. Este procedimento emprega a forma diferencial de uma equação de estado para um fluido compressível e a equação da continuidade a fim de que a correção da pressão seja determinada. Uma versão paralelizada do simulador numérico foi implementada usando a linguagem de programação C/C++ e a Compute Unified Device Architecture (CUDA) da NVIDIA Corporation. Foram simulados três problemas, o problema unidimensional do escoamento de Couette e os problemas bidimensionais do escoamento no interior de uma Cavidade (Shear Driven Cavity Problem) e da Quebra de Barragem (Dambreak).