977 resultados para Enzyme Expression


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The highest concentrations of prostaglandins in nature are found in the Caribbean gorgonian Plexaura homomalla. Depending on its geographical location, this coral contains prostaglandins with typical mammalian stereochemistry (15S-hydroxy) or the unusual 15R-prostaglandins. Their metabolic origin has remained the subject of mechanistic speculations for three decades. Here, we report the structure of a type of cyclooxygenase (COX) that catalyzes transformation of arachidonic acid into 15R-prostaglandins. Using a homology-based reverse transcriptase–PCR strategy, we cloned a cDNA corresponding to a COX protein from the R variety of P. homomalla. The deduced peptide sequence shows 80% identity with the 15S-specific coral COX from the Arctic soft coral Gersemia fruticosa and ≈50% identity to mammalian COX-1 and COX-2. The predicted tertiary structure shows high homology with mammalian COX isozymes having all of the characteristic structural units and the amino acid residues important in catalysis. Some structural differences are apparent around the peroxidase active site, in the membrane-binding domain, and in the pattern of glycosylation. When expressed in Sf9 cells, the P. homomalla enzyme forms a 15R-prostaglandin endoperoxide together with 11R-hydroxyeicosatetraenoic acid and 15R-hydroxyeicosatetraenoic acid as by-products. The endoperoxide gives rise to 15R-prostaglandins and 12R-hydroxyheptadecatrienoic acid, identified by comparison to authentic standards. Evaluation of the structural differences of this 15R-COX isozyme should provide new insights into the substrate binding and stereospecificity of the dioxygenation reaction of arachidonic acid in the cyclooxygenase active site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DAX-1 [dosage-sensitive sex reversal, adrenal hypoplasia congenita (AHC) critical region on the X chromosome, gene 1] is an orphan nuclear receptor that represses transcription by steroidogenic factor-1 (SF-1), a factor that regulates expression of multiple steroidogenic enzymes and other genes involved in reproduction. Mutations in the human DAX1 gene (also known as AHC) cause the X-linked syndrome AHC, a disorder that is associated with hypogonadotropic hypogonadism also. Characterization of Dax1-deficient male mice revealed primary testicular defects that included Leydig cell hyperplasia (LCH) and progressive degeneration of the germinal epithelium, leading to infertility. In this study, we investigated the effect of Dax1 disruption on the expression profile of various steroidogenic enzyme genes in Leydig cells isolated from Dax1-deficient male mice. Expression of the aromatase (Cyp19) gene, which encodes the enzyme that converts testosterone to estradiol, was increased significantly in the Leydig cells isolated from mutant mice, whereas the expression of other proteins (e.g., StAR and Cyp11a) was not altered. In in vitro transfection studies, DAX-1 repressed the SF-1-mediated transactivation of the Cyp19 promoter but did not inhibit the StAR or Cyp11a promoters. Elevated Cyp19 expression was accompanied by increased intratesticular levels of estradiol. Administration of tamoxifen, a selective estrogen-receptor modulator, restored fertility to the Dax1-deficient male mice and partially corrected LCH, suggesting that estrogen excess contributes to LCH and infertility. Based on these in vivo and in vitro analyses, aromatase seems to be a physiologic target of Dax-1 in Leydig cells, and increased Cyp19 expression may account, in part, for the infertility and LCH in Dax1-deficient mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role and even the existence of myocyte proliferation in the adult heart remain controversial. Documentation of cell cycle regulators, DNA synthesis, and mitotic images has not modified the view that myocardial growth can only occur from hypertrophy of an irreplaceable population of differentiated myocytes. To improve understanding the biology of the heart and obtain supportive evidence of myocyte replication, three indices of cell proliferation were analyzed in dogs affected by a progressive deterioration of cardiac performance and dilated cardiomyopathy. The magnitude of cycling myocytes was evaluated by the expression of Ki67 in nuclei. Ki67 labeling of left ventricular myocytes increased 5-fold, 12-fold, and 17-fold with the onset of moderate and severe ventricular dysfunction and overt failure, respectively. Telomerase activity in vivo is present only in multiplying cells; this enzyme increased 2.4-fold and 3.1-fold in the decompensated heart, preserving telomeric length in myocytes. The contribution of cycling myocytes to telomerase activity was determined by the colocalization of Ki67 and telomerase in myocyte nuclei. More than 50% of Ki67-positive cells expressed telomerase in the overloaded myocardium, suggesting that these myocytes were the morphological counterpart of the biochemical assay of enzyme activity. Moreover, we report that 20–30% of canine myocytes were telomerase competent, and this value was not changed by cardiac failure. In conclusion, the enhanced expression of Ki67 and telomerase activity, in combination with Ki67-telomerase labeling of myocyte nuclei, support the notion that myocyte proliferation contributes to cardiac hypertrophy of the diseased heart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The infected cell protein 0 (ICP0) of herpes simplex virus 1, a promiscuous transactivator shown to enhance the expression of genes introduced into cells by infection or transfection, interacts with numerous cellular proteins and has been linked to the disruption of ND10 and degradation of several proteins. ICP0 contains a RING finger domain characteristic of a class of E3 ubiquitin ligases. We report that: (i) in infected cells, ICP0 interacts dynamically with proteasomes and is bound to proteasomes in the presence of the proteasome inhibitor MG132. Also in infected cells, cdc34, a polyubiquitinated E2 ubiquitin-conjugating enzyme, exhibits increased ICP0-dependent dynamic interaction with proteasomes. (ii) In an in vitro substrate-independent ubiquitination system, the RING finger domain encoded by exon 2 of ICP0 binds cdc34, whereas the carboxyl-terminal domain of ICP0 functions as an E3 ligase independent of the RING finger domain. The results indicate that ICP0 can act as a unimolecular E3 ubiquitin ligase and that it promotes ubiquitin-protein ligation and binds the E2 cdc34. It differs from other unimolecular E3 ligases in that the domain containing the RING finger binds E2, whereas the ligase activity maps to a different domain of the protein. The results also suggest that ICP0 shuttles between nucleus and cytoplasm as a function of its dynamic interactions with proteasomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peppermint (Mentha × piperita L.) was independently transformed with a homologous sense version of the 1-deoxy-d-xylulose-5-phosphate reductoisomerase cDNA and with a homologous antisense version of the menthofuran synthase cDNA, both driven by the CaMV 35S promoter. Two groups of transgenic plants were regenerated in the reductoisomerase experiments, one of which remained normal in appearance and development; another was deficient in chlorophyll production and grew slowly. Transgenic plants of normal appearance and growth habit expressed the reductoisomerase transgene strongly and constitutively, as determined by RNA blot analysis and direct enzyme assay, and these plants accumulated substantially more essential oil (about 50% yield increase) without change in monoterpene composition compared with wild-type. Chlorophyll-deficient plants did not afford detectable reductoisomerase mRNA or enzyme activity and yielded less essential oil than did wild-type plants, indicating cosuppression of the reductoisomerase gene. Plants transformed with the antisense version of the menthofuran synthase cDNA were normal in appearance but produced less than half of this undesirable monoterpene oil component than did wild-type mint grown under unstressed or stressed conditions. These experiments demonstrate that essential oil quantity and quality can be regulated by metabolic engineering. Thus, alteration of the committed step of the mevalonate-independent pathway for supply of terpenoid precursors improves flux through the pathway that leads to increased monoterpene production, and antisense manipulation of a selected downstream monoterpene biosynthetic step leads to improved oil composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Testis angiotensin-converting enzyme (ACE) is a unique form of ACE, only produced by male germ cells, and results from a testis-specific promoter found within the ACE gene. We have investigated the role of cAMP-response element modulator (CREM)tau in testis ACE transcription. In gel shift experiments, testes nuclear proteins retard an oligonucleotide containing the cAMP-response element (CRE) found at position -55 in the testis ACE promoter. Anti-CREM antibody supershifts this complex. Competitive gel shift shows that recombinant CREM tau protein and testis nuclear proteins have a similar specificity of binding to the tests ACE CRE. Functional analysis using in vitro transcription and transfection studies also demonstrate that CREM tau protein is a transcriptional activator of the testis ACE promoter. Western blot analysis identifies CREM tau protein in the protein-DNA complex formed between nuclear proteins and the testis ACE CRE motif. This analysis also identified other CREM isoforms in the gel-shifted complex, which are thought to be CREM tau 1/2, CREM alpha/beta, and S-CREM. These data indicate that CREM tau isoforms play an important role as a positive regulator in the tissue-specific expression of testis ACE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A phenotypic cloning approach was used to isolate a canine cDNA encoding Forssman glycolipid synthetase (FS; UDP-GalNAc:globoside alpha-1,3-N-acetylgalactosaminyltransferase; EC 2.4.1.88). The deduced amino acid sequence of FS demonstrates extensive identity to three previously cloned glycosyltransferases, including the enzymes responsible for synthesis of histo-blood group A and B antigens. These three enzymes, like FS, catalyze the addition of either N-acetylgalactosamine (GalNAc) or galactose (Gal) in alpha-1,3-linkage to their respective substrates. Despite the high degree of sequence similarity among the transferases, we demonstrate that the FS cDNA encodes an enzyme capable of synthesizing Forssman glycolipid, and demonstrates no GalNAc or Gal transferase activity when closely related substrates are examined. Thus, the FS cDNA is a novel member of the histo-blood group ABO gene family that encodes glycosyltransferases with related but distinct substrate specificity. Cloning of the FS cDNA will allow a detailed dissection of the roles Forssman glycolipid plays in cellular differentiation, development, and malignant transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tet regulatory system in which doxycycline (dox) acts as an inducer of specifically engineered RNA polymerase II promoters was transferred into transgenic mice. Tight control and a broad range of regulation spanning up to five orders of magnitude were monitored dependent on the dox concentration in the water supply of the animals. Administration of dox rapidly induces the synthesis of the indicator enzyme luciferase whose activity rises over several orders of magnitude within the first 4 h in some organs. Induction is complete after 24 h in most organs analyzed. A comparable regulatory potential was revealed with the tet regulatory system where dox prevents transcription activation. Directing the synthesis of the tetracycline-controlled transactivator (tTA) to the liver led to highly specific regulation in hepatocytes where, in presence of dox, less than one molecule of luciferase was detected per cell. By contrast, a more than 10(5)-fold activation of the luciferase gene was observed in the absence of the antibiotic. This regulation was homogeneous throughout but stringently restricted to hepatocytes. These results demonstrate that both tetracycline-controlled transcriptional activation systems provide genetic switches that permit the quantitative control of gene activities in transgenic mice in a tissue-specific manner and, thus, suggest possibilities for the generation of a novel type of conditional mutants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac hypertrophy is associated with altered expression of the components of the cardiac renin-angiotensin system (RAS). While in vitro data suggest that local mechanical stimuli serve as important regulatory modulators of cardiac RAS activity, no in vivo studies have so far corroborated these observations. The aims of this study were to (i) examine the respective influence of local, mechanical versus systemic, soluble factors on the modulation of cardiac RAS gene expression in vivo; (ii) measure gene expression of all known components of the RAS simultaneously; and (iii) establish sequence information and an assay system for the RAS of the dog, one of the most important model organisms in cardiovascular research. We therefore examined a canine model of right ventricular hypertrophy and failure (RVHF) in which the right ventricle (RV) is hemodynamically loaded, the left ventricle (LV) is hemodynamically unloaded, while both are exposed to the same circulating milieu of soluble factors. Using specific competitive PCR assays, we found that RVHF was associated with significant increases in RV mRNA levels of angiotensin converting enzyme and angiotensin II type 2 receptor, and with significant decreases of RV expression of chymase and the angiotensin II type 1 receptor, while RV angiotensinogen and renin remained unchanged. All components remained unchanged in the LV. We conclude that (i) dissociated regional regulation of RAS components in RV and LV indicates modulation by local, mechanical, not soluble, systemic stimuli; (ii) components of the cardiac RAS are independently and differentially regulated; and (iii) opposite changes in the expression of angiotensin converting enzyme and chymase, and of angiotensin II type I and angiotensin II type 2 receptors, may indicate different physiological roles of these RAS components in RVHF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Certain matrix metalloproteinases (MMP) are expressed within the fibrous areas surrounding acellular lipid cores of atherosclerotic plaques, suggesting that these proteinases degrade matrix proteins within these areas and weaken the structural integrity of the lesion. We report that matrilysin and macrophage metalloelastase, two broad-acting MMPs, were expressed in human atherosclerotic lesions in carotid endarterectomy samples (n = 18) but were not expressed in normal arteries (n = 7). In situ hybridization and immunohistochemistry revealed prominent expression of matrilysin in cells confined to the border between acellular lipid cores and overlying fibrous areas, a distribution distinct from other MMPs found in similar lesions. Metalloelastase was expressed in these same border areas. Matrilysin was present in lipid-laden macrophages, identified by staining with anti-CD-68 antibody. Furthermore, endarterectomy tissue in organ culture released matrilysin. Staining for versican demonstrated that this vascular proteoglycan was present at sites of matrilysin expression. Biochemical studies showed that matrilysin degraded versican much more efficiently than other MMPs present in atherosclerotic lesions. Our findings suggest that matrilysin, specifically expressed in atherosclerotic lesions, could cleave structural proteoglycans and other matrix components, potentially leading to separation of caps and shoulders from lipid cores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

delta-Aminolevulinate in plants, algae, cyanobacteria, and several other bacteria such as Escherichia coli and Bacillus subtilis is synthesized from glutamate by means of a tRNA(Glu) mediated pathway. The enzyme glutamyl tRNA(Glu) reductase catalyzes the second step in this pathway, the reduction of tRNA bound glutamate to give glutamate 1-semialdehyde. The hemA gene from barley encoding the glutamyl tRNA(Glu) reductase was expressed in E. coli cells joined at its amino terminal end to Schistosoma japonicum glutathione S-transferase (GST). GST-glutamyl tRNA(Glu) reductase fusion protein and the reductase released from it by thrombin digestion catalyzed the reduction of glutamyl tRNA(Glu) to glutamate 1-semialdehyde. The specific activity of the fusion protein was 120 pmol.micrograms-1.min-1. The fusion protein used tRNA(Glu) from barley chloroplasts preferentially to E. coli tRNA(Glu) and its activity was inhibited by hemin. It migrated as an 82-kDa polypeptide with SDS/PAGE and eluted with an apparent molecular mass of 450 kDa from Superose 12. After removal of the GST by thrombin, the protein migrated as an approximately equal to 60-kDa polypeptide with SDS/PAGE, whereas gel filtration on Superose 12 yielded an apparent molecule mass of 250 kDa. Isolated fusion protein contained heme, which could be reduced by NADPH and oxidized by air.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fabry disease is an X-linked metabolic disorder due to a deficiency of alpha-galactosidase A (alpha-gal A; EC 3.2.1.22). Patients accumulate glycosphingolipids with terminal alpha-galactosyl residues that come from intracellular synthesis, circulating metabolites, or from the biodegradation Of senescent cells. Patients eventually succumb to renal, cardio-, or cerebrovascular disease. No specific therapy exists. One possible approach to ameliorating this disorder is to target corrective gene transfer therapy to circulating hematopoietic cells. Toward this end, an amphotropic virus-producer cell line has been developed that produces a high titer (>10(6) i.p. per ml) recombinant retrovirus constructed to transduce and correct target cells. Virus-producer cells also demonstrate expression of large amounts of both intracellular and secreted alpha-gal A. To examine the utility of this therapeutic vector, skin fibroblasts from Fabry patients were corrected for the metabolic defect by infection with this recombinant virus and secreted enzyme was observed. Furthermore, the secreted enzyme was found to be taken up by uncorrected cells in a mannose-6-phosphate receptor-dependent manner. In related experiments, immortalized B cell lines from Fabry patients, created as a hematologic delivery test system, were transduced. As with the fibroblasts, transduced patient B cell lines demonstrated both endogenous enzyme correction and a small amount of secretion together with uptake by uncorrected cells. These studies demonstrate that endogenous metabolic correction in transduced cells, combined with secretion, may provide a continuous source of corrective material in trans to unmodified patient bystander cells (metabolic cooperativity).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the fundamental questions concerning expression and function of dimeric enzymes involves the impact of naturally occurring mutations on subunit assembly and heterodimer activity. This question is of particular interest for the human enzyme galactose-l-phosphate uridylyl-transferase (GALT), impairment of which results in the inherited metabolic disorder galactosemia, because many if not most patients studied to date are compound heterozygotes rather than true molecular homozygotes. Furthermore, the broad range of phenotypic severity observed in these patients raises the possibility that allelic combination, not just allelic constitution, may play some role in determining outcome. In the work described herein, we have selected two distinct naturally occurring null mutations of GALT, Q188R and R333W, and asked the questions (i) what are the impacts of these mutations on subunit assembly, and (ii) if heterodimers do form, are they active? To answer these questions, we have established a yeast system for the coexpression of epitope-tagged alleles of human GALT and investigated both the extent of specific GALT subunit interactions and the activity of defined heterodimer pools. We have found that both homodimers and heterodimers do form involving each of the mutant subunits tested and that both heterodimer pools retain substantial enzymatic activity. These results are significant not only in terms of their implications for furthering our understanding of galactosemia and GALT holoenzyme structure-function relationships but also because the system described may serve as a model for similar studies of other complexes composed of multiple subunits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperacute rejection of a porcine organ by higher primates is initiated by the binding of xenoreactive natural antibodies of the recipient to blood vessels in the graft leading to complement activation. The majority of these antibodies recognize the carbohydrate structure Gal(alphal,3)Gal (gal epitope) present on cells of pigs. It is possible that the removal or lowering of the number of gal epitopes on the graft endothelium could prevent hyperacute rejection. The Gal(alpha1,3) Gal structure is formed by the enzyme Galbeta1,4GlcNAc3-alpha-D-galactosyltransferase [alpha(1,3)GT; EC 2.4.1.51], which transfers a galactose molecule to terminal N-acetyllactosamine (N-lac) present on various glycoproteins and glycolipids. The N-lac structure might be utilized as an acceptor by other glycosyltransferases such as Galbeta1,4GlcNAc 6-alpha-D-sialyltransferase [alpha(2,6)ST], Galbeta1,4GlcNAc 3-alpha-D-Sialyltransferase [alpha(2,3)ST], or Galbeta 2-alpha-L-fucosyltransferase [alpha(1,2)FT; EC 2.4.1.691, etc. In this report we describe the competition between alpha(1,2)FT and alpha(1,3)GT in cells in culture and the generation of transgenic mice and transgenic pigs that express alpha(1,2)Fr leading to synthesis of Fucalpha,2Galbeta- (H antigen) and a concomitant decrease in the level of Gal(alpha1,3)Gal. As predicted, this resulted in reduced binding of xenoreactive natural antibodies to endothelial cells of transgenic mice and protection from complement mediated lysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants need to avoid or dissipate excess light energy to protect photosystem II (PSII) from photoinhibitory damage. Higher plants have a conserved system that dissipates excess energy as heat in the light-harvesting complexes of PSII that depends on the transthylakoid delta pH and violaxanthin de-epoxidase (VDE) activity. To our knowledge, we report the first cloning of a cDNA encoding VDE and expression of functional enzyme in Escherichia coli. VDE is nuclear encoded and has a transit peptide with characteristic features of other lumen-localized proteins. The cDNA encodes a putative polypeptide of 473 aa with a calculated molecular mass of 54,447 Da. Cleavage of the transit peptide results in a mature putative polypeptide of 348 aa with a calculated molecular mass of 39,929 Da, close to the apparent mass of the purified enzyme (43 kDa). The protein has three interesting domains including (i) a cysteine-rich region, (ii) a lipocalin signature, and (iii) a highly charged region. The E. coli expressed enzyme de-epoxidizes violaxanthin sequentially to antheraxanthin and zeaxanthin, and is inhibited by dithiothreitol, similar to VDE purified from chloroplasts. This confirms that the cDNA encodes an authentic VDE of a higher plant and is unequivocal evidence that the same enzyme catalyzes the two-step mono de-epoxidation reaction. The cloning of VDE opens new opportunities for examining the function and evolution of the xanthophyll cycle, and possibly enhancing light-stress tolerance of plants.