954 resultados para Engineering, Industrial|Artificial Intelligence
Resumo:
Electrodeposition of thin copper layer was carried out on titanium wires in acidic sulphate bath. The influence of titanium surface preparation, cathodic current density, copper sulphate and sulphuric acid concentrations, electrical charge density and stirring of the solution on the adhesion of the electrodeposits was studied using the Taguchi statistical method. A L(16) orthogonal array with the six factors of control at two levels each and three interactions was employed. The analysis of variance of the mean adhesion response and signal-to-noise ratio showed the great influence of cathodic current density on adhesion. on the contrary, the other factors as well as the three investigated interactions revealed low or no significant effect. From this study optimized electrolysis conditions were defined. The copper electrocoating improved the electrical conductivity of the titanium wire. This shows that copper electrocoated titanium wires could be employed for both electrical purpose and mechanical reinforcement in superconducting magnets. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this study, the influence of the glass addition and sintering parameters on the densification and mechanical properties of tetragonal zirconia polycrystals (3Y-TZP) ceramics were evaluated. High-purity tetragonal ZrO2 powder and La2O3-rich glass were used as starting powders. Two compositions based on ZrO2 and containing 5wt.% and 10wt.% of La2O3-rich glass were studied in this work. The starting powders were mixed/milled by planetary milling, dried at 90 degrees C for 24 h, sieved through a 60 mesh screen and uniaxially cold pressed under 80 MPa. The samples were sintered in air at 1200 degrees C, 1300 degrees C, 1400 degrees C for 60 min and at 1450 degrees C for 120 min, with heating and cooling rates of 10 degrees C/min. Sintered samples were characterized by relative density, X-ray diffraction (XRD) and scanningelectron microscopy (SEM). Hardness and fracture toughness were obtained by Vickers indentation method. Dense sintered samples were obtained for all conditions. Furthermore, only tetragonal-ZrO2 was identified as crystalline phase in sintered samples, independently of the conditions studied. Samples sintered at 1300 degrees C for 60 min presented the optimal mechanical properties with hardness and fracture toughness values near to 12 GPa and 8.5 MPa m(1/2) respectively. (c) 2007 Elsevier B.V, All rights reserved.
Resumo:
In this paper, artificial neural networks are employed in a novel approach to identify harmonic components of single-phase nonlinear load currents, whose amplitude and phase angle are subject to unpredictable changes, even in steady-state. The first six harmonic current components are identified through the variation analysis of waveform characteristics. The effectiveness of this method is tested by applying it to the model of a single-phase active power filter, dedicated to the selective compensation of harmonic current drained by an AC controller. Simulation and experimental results are presented to validate the proposed approach. (C) 2010 Elsevier B. V. All rights reserved.
Resumo:
The crossflow filtration process differs of the conventional filtration by presenting the circulation flow tangentially to the filtration surface. The conventional mathematical models used to represent the process have some limitations in relation to the identification and generalization of the system behaviour. In this paper, a system based on artificial neural networks is developed to overcome the problems usually found in the conventional mathematical models. More specifically, the developed system uses an artificial neural network that simulates the behaviour of the crossflow filtration process in a robust way. Imprecisions and uncertainties associated with the measurements made on the system are automatically incorporated in the neural approach. Simulation results are presented to justify the validity of the proposed approach. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The productivity associated with commonly available disassembly methods today seldomly makes disassembly the preferred end-of-life solution for massive take back product streams. Systematic reuse of parts or components, or recycling of pure material fractions are often not achievable in an economically sustainable way. In this paper a case-based review of current disassembly practices is used to analyse the factors influencing disassembly feasibility. Data mining techniques were used to identify major factors influencing the profitability of disassembly operations. Case characteristics such as involvement of the product manufacturer in the end-of-life treatment and continuous ownership are some of the important dimensions. Economic models demonstrate that the efficiency of disassembly operations should be increased an order of magnitude to assure the competitiveness of ecologically preferred, disassembly oriented end-of-life scenarios for large waste of electric and electronic equipment (WEEE) streams. Technological means available to increase the productivity of the disassembly operations are summarized. Automated disassembly techniques can contribute to the robustness of the process, but do not allow to overcome the efficiency gap if not combined with appropriate product design measures. Innovative, reversible joints, collectively activated by external trigger signals, form a promising approach to low cost, mass disassembly in this context. A short overview of the state-of-the-art in the development of such self-disassembling joints is included. (c) 2008 CIRP.
Resumo:
Voltage and current waveforms of a distribution or transmission power system are not pure sinusoids. There are distortions in these waveforms that can be represented as a combination of the fundamental frequency, harmonics and high frequency transients. This paper presents a novel approach to identifying harmonics in power system distorted waveforms. The proposed method is based on Genetic Algorithms, which is an optimization technique inspired by genetics and natural evolution. GOOAL, a specially designed intelligent algorithm for optimization problems, was successfully implemented and tested. Two kinds of representations concerning chromosomes are utilized: binary and real. The results show that the proposed method is more precise than the traditional Fourier Transform, especially considering the real representation of the chromosomes.
Resumo:
The purpose of this paper is to propose a multiobjective optimization approach for solving the manufacturing cell formation problem, explicitly considering the performance of this said manufacturing system. Cells are formed so as to simultaneously minimize three conflicting objectives, namely, the level of the work-in-process, the intercell moves and the total machinery investment. A genetic algorithm performs a search in the design space, in order to approximate to the Pareto optimal set. The values of the objectives for each candidate solution in a population are assigned by running a discrete-event simulation, in which the model is automatically generated according to the number of machines and their distribution among cells implied by a particular solution. The potential of this approach is evaluated via its application to an illustrative example, and a case from the relevant literature. The obtained results are analyzed and reviewed. Therefore, it is concluded that this approach is capable of generating a set of alternative manufacturing cell configurations considering the optimization of multiple performance measures, greatly improving the decision making process involved in planning and designing cellular systems. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Purpose - The purpose of this paper is to examine whether the level of logistics information systems (LIS) adoption in manufacturing companies is influenced by organizational profile variables, such as the company`s size, the nature of its operations and their subsectors. Design/methodology/approach - A review of the mainstream literature on US was carried out to identify the factors influencing the adoption of such information systems and also some research gaps. The empirical study`s strategy is based on a survey research in Brazilian manufacturing firms from the capital goods industry. Data collected were analyzed through Kruskall-Wallis and Mann Whitney`s non-parametric tests. Findings - The analysis indicates that characteristics such as the size of companies and the nature of their operations influence the levels of LIS adoption, whilst comparisons regarding the subsectors appeared to be of little influence. Originality/value - This is the first known study to examine the influence of organizational profiles such as size, nature of operations and subsector on the level of US adoption in manufacturing companies. Moreover, it is unique in portraying the Brazilian scenario on this topic and addressing the adoption of seven types of LIS in a single study.
Resumo:
The general flowshop scheduling problem is a production problem where a set of n jobs have to be processed with identical flow pattern on in machines. In permutation flowshops the sequence of jobs is the same on all machines. A significant research effort has been devoted for sequencing jobs in a flowshop minimizing the makespan. This paper describes the application of a Constructive Genetic Algorithm (CGA) to makespan minimization on flowshop scheduling. The CGA was proposed recently as an alternative to traditional GA approaches, particularly, for evaluating schemata directly. The population initially formed only by schemata, evolves controlled by recombination to a population of well-adapted structures (schemata instantiation). The CGA implemented is based on the NEH classic heuristic and a local search heuristic used to define the fitness functions. The parameters of the CGA are calibrated using a Design of Experiments (DOE) approach. The computational results are compared against some other successful algorithms from the literature on Taillard`s well-known standard benchmark. The computational experience shows that this innovative CGA approach provides competitive results for flowshop scheduling; problems. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
There are several tools in the literature that support innovation in organizations. Some of the most cited are the so-called technology roadmapping methods, also known as TRM. However, these methods are designed primarily for organizations that adopt the market pull strategy of technology-product integration. Organizations that adopt the technology push integration strategy are neglected in the literature. Furthermore, with the advent of open innovation, it is possible to note the need to consider the adoption of partnerships in the innovation process. Thus, this study proposes a method of technology roadmapping, identified as method for technology push (MTP), applicable to organizations that adopt the technology push integration strategy, such as SMEs and independent research centers in an open-innovation environment. The method was developed through action-research and was assessed from two analytical standpoints: externally, via a specific literature review on its theoretical contributions, and internally, through the analysis of potential users` perceptions on the feasibility of applying MTP. The results indicate both the unique character of the method and its perceived implementation feasibility. Future research is suggested in order to validate the method in different types of organizations (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This work presents a novel dressing technique that allows the inscription of pre-configurable patterns, or textures, on the grinding wheel surface. An electro-mechanical exciter connected to the dressing tool receives synchronized signal from a control software engraving patterns on the grinding wheel. The dressing and grinding operations were evaluated using the AE mapping technique. The presented applications show the use of textured grinding wheels for better grinding process performance in conventional applications and also for the production of patterned surfaces in order to change its functional performance. The results and analysis allow a better understanding of the grinding mechanism with patterned wheels. With the application of the proposed method it was possible to inscribe different patterns on workpieces and also to increase the grinding performance in conventional applications. (C) 2010 CIRP.
Resumo:
The aim of this work is to study the wheel/workpiece dynamic interactions in high-speed grinding using vitrified CBN wheel and DTG (difficult to grind) work materials. This problem is typical in the grinding of engine valve heads. The influence of tangential force per abrasive grain was investigated as an important control variable for the determination of G ratio. Experiments were carried out to observe the influence of vibrations in the wheel wear. The measurements of acoustic emission (AE) and vibration signals helped in identifying the correlation between the dynamic interactions (produced by forced random excitation) and the wheel wear. The wheel regenerative chatter phenomenon was observed by using the wheel mapping technique. (c) 2008 CIRP.
Resumo:
In this paper, a framework for detection of human skin in digital images is proposed. This framework is composed of a training phase and a detection phase. A skin class model is learned during the training phase by processing several training images in a hybrid and incremental fuzzy learning scheme. This scheme combines unsupervised-and supervised-learning: unsupervised, by fuzzy clustering, to obtain clusters of color groups from training images; and supervised to select groups that represent skin color. At the end of the training phase, aggregation operators are used to provide combinations of selected groups into a skin model. In the detection phase, the learned skin model is used to detect human skin in an efficient way. Experimental results show robust and accurate human skin detection performed by the proposed framework.
Resumo:
This paper investigates how to make improved action selection for online policy learning in robotic scenarios using reinforcement learning (RL) algorithms. Since finding control policies using any RL algorithm can be very time consuming, we propose to combine RL algorithms with heuristic functions for selecting promising actions during the learning process. With this aim, we investigate the use of heuristics for increasing the rate of convergence of RL algorithms and contribute with a new learning algorithm, Heuristically Accelerated Q-learning (HAQL), which incorporates heuristics for action selection to the Q-Learning algorithm. Experimental results on robot navigation show that the use of even very simple heuristic functions results in significant performance enhancement of the learning rate.
Resumo:
In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm, based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining ""absolute"" and ""relative"" safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 [14], using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the ""Automatic Dependent Surveillance-Broadcasting"" (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric. (C) 2011 Elsevier Ltd. All rights reserved.