796 resultados para Energy expenditure


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent data have identified leptin as an afferent signal in a negative-feedback loop regulating the mass of the adipose tissue. High leptin levels are observed in obese humans and rodents, suggesting that, in some cases, obesity is the result of leptin insensitivity. This hypothesis was tested by comparing the response to peripherally and centrally administered leptin among lean and three obese strains of mice: diet-induced obese AKR/J, New Zealand Obese (NZO), and Ay. Subcutaneous leptin infusion to lean mice resulted in a dose-dependent loss of body weight at physiologic plasma levels. Chronic infusions of leptin intracerebroventricularly (i.c.v.) at doses of 3 ng/hr or greater resulted in complete depletion of visible adipose tissue, which was maintained throughout 30 days of continuous i.c.v. infusion. Direct measurement of energy balance indicated that leptin treatment did not increase total energy expenditure but prevented the decrease that follows reduced food intake. Diet-induced obese mice lost weight in response to peripheral leptin but were less sensitive than lean mice. NZO mice were unresponsive to peripheral leptin but were responsive to i.c.v. leptin. Ay mice did not respond to subcutaneous leptin and were 1/100 as sensitive to i.c.v. leptin. The decreased response to leptin in diet-induced obese, NZO, and Ay mice suggests that obesity in these strains is the result of leptin resistance. In NZO mice, leptin resistance may be the result of decreased transport of leptin into the cerebrospinal fluid, whereas in Ay mice, leptin resistance probably results from defects downstream of the leptin receptor in the hypothalamus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Obesity is a complex disease, and multiple genes contribute to the trait. The description of five genes (ob, db, tub, Ay, and fat) responsible for distinct syndromes of spontaneous monogenic obesity in mice has advanced our knowledge of the genetics of obesity. However, many other genes involved in the expression of this disease remain to be determined. We report here the identification of an additional class of genes involved in the regulation of adipose tissue mass. These genes encode receptors mediating leukocyte adhesion. Mice deficient in intercellular adhesion molecule-1 became spontaneously obese in old age on normal mouse chow or at a young age when provided with a diet rich in fat. Mice deficient in the counterreceptor for intercellular adhesion molecule-1, the leukocyte integrin αMβ2 (Mac-1), showed a similar obesity phenotype. Since all mice consumed approximately the same amount of food as controls, the leukocyte function appears to be in regulating lipid metabolism and/or energy expenditure. Our results indicate that (i) leukocytes play a role in preventing excess body fat deposition and (ii) defects in leukocyte adhesion receptors can result in obesity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leptin acts as a potent inhibitory factor against obesity by regulating energy expenditure, food intake, and adiposity. The obese diabetic db/db mouse, which has defects in leptin receptor, displays enhanced neural responses and elevated behavioral preference to sweet stimuli. Here, we show the effects of leptin on the peripheral taste system. An administration of leptin into lean mice suppressed responses of peripheral taste nerves (chorda tympani and glossopharyngeal) to sweet substances (sucrose and saccharin) without affecting responses to sour, salty, and bitter substances. Whole-cell patch-clamp recordings of activities of taste receptor cells isolated from circumvallate papillae (innervated by the glossopharyngeal nerve) demonstrated that leptin activated outward K+ currents, which resulted in hyperpolarization of taste cells. The db/db mouse with impaired leptin receptors showed no such leptin suppression. Taste tissue (circumvallate papilla) of lean mice expressed leptin-receptor mRNA and some of the taste cells exhibited immunoreactivities to antibodies of the leptin receptor. Taken together, these observations suggest that the taste organ is a peripheral target for leptin, and that leptin may be a sweet-sensing modulator (suppressor) that may take part in regulation of food intake. Defects in this leptin suppression system in db/db mice may lead to their enhanced peripheral neural responses and enhanced behavioral preferences for sweet substances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mitochondria are confronted with low oxygen levels in the microenvironment within tissues; yet, isolated mitochondria are routinely studied under air-saturated conditions that are effectively hyperoxic, increase oxidative stress, and may impair mitochondrial function. Under hypoxia, on the other hand, respiration and ATP supply are restricted. Under these conditions of oxygen limitation, any compromise in the coupling of oxidative phosphorylation to oxygen consumption could accentuate ATP depletion, leading to metabolic failure. To address this issue, we have developed the approach of oxygen-injection microcalorimetry and ADP-injection respirometry for evaluating mitochondrial function at limiting oxygen supply. Whereas phosphorylation efficiency drops during ADP limitation at high oxygen levels, we show here that oxidative phosphorylation is more efficient at low oxygen than at air saturation, as indicated by higher ratios of ADP flux to total oxygen flux at identical submaximal rates of ATP synthesis. At low oxygen, the proton leak and uncoupled respiration are depressed, thus reducing maintenance energy expenditure. This indicates the importance of low intracellular oxygen levels in avoiding oxidative stress and protecting bioenergetic efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To elucidate the role of neuropeptide Y (NPY)-Y1 receptor (Y1-R) in food intake, energy expenditure, and other possible functions, we have generated Y1-R-deficient mice (Y1-R−/−) by gene targeting. Contrary to our hypothesis that the lack of NPY signaling via Y1-R would result in impaired feeding and weight loss, Y1-R−/− mice showed a moderate obesity and mild hyperinsulinemia without hyperphagia. Although there was some variation between males and females, typical characteristics of Y1-R−/− mice include: greater body weight (females more than males), an increase in the weight of white adipose tissue (WAT) (approximately 4-fold in females), an elevated basal level of plasma insulin (approximately 2-fold), impaired insulin secretion in response to glucose administration, and a significant changes in mitochondrial uncoupling protein (UCP) gene expression (up-regulation of UCP1 in brown adipose tissue and down-regulation of UCP2 in WAT). These results suggest either that the Y1-R in the hypothalamus is not a key molecule in the leptin/NPY pathway, which controls feeding behavior, or that its deficiency is compensated by other receptors, such as NPY-Y5 receptor. We believe that the mild obesity found in Y1-R−/− mice (especially females) was caused by the impaired control of insulin secretion and/or low energy expenditure, including the lowered expression of UCP2 in WAT. This model will be useful for studying the mechanism of mild obesity and abnormal insulin metabolism in noninsulin-dependent diabetes mellitus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

“Catch,” a state where some invertebrate muscles sustain high tension over long periods of time with little energy expenditure (low ATP hydrolysis rate) is similar to the “latch” state of vertebrate smooth muscles. Its induction and release involve Ca2+-dependent phosphatase and cAMP-dependent protein kinase, respectively. Molecular mechanisms for catch remain obscure. Here, we describe a quantitative microscopic in vitro assay reconstituting the catch state with proteins isolated from catch muscles. Thick filaments attached to glass coverslips and pretreated with ≈10−4 M free Ca2+ and soluble muscle proteins bound fluorescently labeled native thin filaments tightly in catch at ≈10−8 M free Ca2+ in the presence of MgATP. At ≈10−4 M free Ca2+, the thin filaments moved at ≈4 μm/s. Addition of cAMP and cAMP-dependent protein kinase at ≈10−8 M free Ca2+ caused their release. Rabbit skeletal muscle F-actin filaments completely reproduced the results obtained with native thin filaments. Binding forces >500 pN/μm between thick and F-actin filaments were measured by glass microneedles, and were sufficient to explain catch tension in vivo. Synthetic filaments of purified myosin and twitchin bound F-actin in catch, showing that other components of native thick filaments such as paramyosin and catchin are not essential. The binding between synthetic thick filaments and F-actin filaments depended on phosphorylation of twitchin but not of myosin. Cosedimentation experiments showed that twitchin did not bind directly to F-actin in catch. These results show that catch is a direct actomyosin interaction regulated by twitchin phosphorylation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relationships between parental effort, offspring growth, and offspring blood parasitemias are poorly known. We examined the effect of parental effort on offspring size and prevalence of trypanosomes in peripheral blood of nestling Pied Flycatchers Ficedula hypoleuca aged 13 days. Trypanosome infections were likely to be shared by siblings, indicating the role of a common environment and/or shared genes in the susceptibility to infection. Broods infected by trypanosomes had reduced growth, but this was due to decreased parental, especially maternal, energy expenditure in broods with nestlings infected by trypanosomes. There was no association between parental infection with trypanosomes and both their energy expenditure and the infection of their broods. Under stressful conditions caused by low maternal energy expenditure, the immune response of nestlings during growth was probably impaired, in a way analogous to the relapses of blood parasitemias with reproductive effort in breeding animals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many studies of caloric restriction (CR) in rodents and lower animals indicate that this nutritional manipulation retards aging processes, as evidenced by increased longevity, reduced pathology, and maintenance of physiological function in a more youthful state. The anti-aging effects of CR are believed to relate, at least in part, to changes in energy metabolism. We are attempting to determine whether similar effects occur in response to CR in nonhuman primates. Core (rectal) body temperature decreased progressively with age from 2 to 30 years in rhesus monkeys fed ad lib (controls) and is reduced by approximately 0.5 degrees C in age-matched monkeys subjected to 6 years of a 30% reduction in caloric intake. A short-term (1 month) 30% restriction of 2.5-year-old monkeys lowered subcutaneous body temperature by 1.0 degrees C. Indirect calorimetry showed that 24-hr energy expenditure was reduced by approximately 24% during short-term CR. The temporal association between reduced body temperature and energy expenditure suggests that reductions in body temperature relate to the induction of an energy conservation mechanism during CR. These reductions in body temperature and energy expenditure are consistent with findings in rodent studies in which aging rate was retarded by CR, now strengthening the possibility that CR may exert beneficial effects in primates analogous to those observed in rodents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Appropriate measures of physical activity are essential for determining the population prevalence of physical activity, for tracking trends over time, and for guiding intervention efforts. Physical activity measurement is characterised by the synthesis of information on the type, frequency, intensity, and duration of activity over a specified period. To date, emphasis in physical activity assessment has been on the measurement of leisure time physical activities. However, some domestic and transport related activities entail energy expenditures equivalent to moderate intensity of 3.0–6.0 METS1 considered to be of sufficient intensity to achieve a health benefit are yet to be included in routine population level physical activity surveillance. This leads to population estimates based only on measures of leisure time physical activities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Alterations in energy expenditure during activity post head injury has not been investigated due primarily to the difficulty of measurement. Objective: The aim of this study was to compare energy expenditure during activity and body composition of children following acquired brain injury (ABI) with data from a group of normal. controls. Design: Energy expenditure was measured using the Cosmed K4b(2) in a group of 15 children with ABI and a group of 67 normal children during rest and when walking and running. Mean number of steps taken per 3 min run was also recorded and body composition was measured. Results: The energy expended during walking was not significantly different between both groups. A significant difference was found between the two groups in the energy expended during running and also for the number of steps taken as children with ABI took significantly less steps than the normal controls during a 3 min run. Conclusions: Children with ABI exert more energy per activity than healthy controls when controlled for velocity or distance. However, they expend less energy to walk and run when they are free to choose their own desirable, comfortable pace than normal controls. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Tuberculosis is an important cause of wasting. The functional consequences of wasting and recovery may depend on the distribution of lost and gained nutrient stores between protein and fat masses. Objective: The goal was to study nutrient partitioning, ie, the proportion of weight change attributable to changes in fat mass (FM) versus protein mass (PM), during anti mycobacterial treatment. Design: Body-composition measures were made of 21 men and 9 women with pulmonary tuberculosis at baseline and after 1 and 6 mo of treatment. All subjects underwent dual-energy X-ray absorptiometry and deuterium bromide dilution tests, and a four-compartment model of FM, total body water (TBW), bone minerals (BM), and PM was derived. The ratio of PM to FM at any time was expressed as the energy content (p-ratio). Changes in the p-ratio were related to disease severity as measured by radiologic criteria. Results: Patients gained 10% in body weight (P < 0.001) from baseline to month 6. This was mainly due to a 44% gain in FM (P < 0.001); PM, BM, and TBW did not change significantly. Results were similar in men and women. The p-ratio decreased from baseline to month 1 and then fell further by month 6. Radiologic disease severity was not correlated with changes in the p-ratio. Conclusions: Microbiological cure of tuberculosis does not restore PM within 6 mo, despite a strong anabolic response. Change in the p-ratio is a suitable parameter for use in studying the effect of disease on body composition because it allows transformation of such effects into a normal distribution across a wide range of baseline proportion between fat and protein mass.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnitudes and patterns of energy expenditure in animal contests are seldom measured, but can be critical for predicting contest dynamics and understanding the evolution of ritualized fighting behaviour. In the sierra dome spider, males compete for sexual access to females and their webs. They show three distinct phases of fighting behaviour, escalating from ritualized noncontact display (phase 1) to cooperative wrestling (phase 2), and finally to unritualized, potentially fatal fighting (phase 3). Using CO2 respirometry, we estimated energetic costs of male-male combat in terms of mean and maximum metabolic rates and the rate of increase in energy expenditure. We also investigated the energetic consequences of age and body mass, and compared fighting metabolism to metabolism during courtship. All three phases involved mean energy expenditures well above resting metabolic rate (3.5 X, 7.4 X and 11.5 X). Both mean and maximum energy expenditure became substantially greater as fights escalated through successive phases. The rates of increase in energy use during phases 2 and 3 were much higher than in phase 1. In addition, age and body mass affected contest energetics. These results are consistent with a basic prediction of evolutionarily stable strategy contest models, that sequences of agonistic behaviours should be organized into phases of escalating energetic costs. Finally, higher energetic costs of escalated fighting compared to courtship provide a rationale for first-male sperm precedence in this spider species. (C) 2004 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The staggerer mice carry a deletion in the RORalpha gene and have a prolonged humoral response, overproduce inflammatory cytokines, and are immunodeficient. Furthermore, the staggerer mice display lowered plasma apoA-I/-II, decreased plasma high density lipoprotein cholesterol and triglycerides, and develop hypo-alpha-lipoproteinemia and atherosclerosis. However, relatively little is known about RORalpha in the context of target tissues, target genes, and lipid homeostasis. For example, RORalpha is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for similar to40% of total body weight and 50% of energy expenditure. This lean tissue is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. In particular, the role of RORalpha in skeletal muscle metabolism has not been investigated, and the contribution of skeletal muscle to the ROR-/- phenotype has not been resolved. We utilize ectopic dominant negative RORalpha expression in skeletal muscle cells to understand the regulatory role of RORs in this major mass peripheral tissue. Exogenous dominant negative RORalpha expression in skeletal muscle cells represses the endogenous levels of RORalpha and -gamma mRNAs and ROR-dependent gene expression. Moreover, we observed attenuated expression of many genes involved in lipid homeostasis. Furthermore, we show that the muscle carnitine palmitoyltransferase-1 and caveolin-3 promoters are directly regulated by ROR and coactivated by p300 and PGC-1. This study implicates RORs in the control of lipid homeostasis in skeletal muscle. In conclusion, we speculate that ROR agonists would increase fatty acid catabolism in muscle and suggest selective activators of ROR may have therapeutic utility in the treatment of obesity and atherosclerosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of short-term fasting and prolonged fasting during aestivation on the morphology of the proximal small intestine and associated organs were investigated in the green-striped burrowing frog, Cyclorana alboguttata (Anura: Hylidae). Animals were fasted for 1 week while active or for 3-9 months during aestivation. Short-duration fasting (1 week) had little effect on the morphology of the small intestine, whilst prolonged fasting during aestivation induced marked enteropathy including reductions in intestinal mass, length and diameter, longitudinal fold height and tunica muscularis thickness. Enterocyte morphology was also affected markedly by prolonged fasting: enterocyte cross-sectional area and microvillous height were reduced during aestivation, intercellular spaces were visibly reduced and the prevalence of lymphocytes amongst enterocytes was increased. Mitochondria and nuclei were also affected by 9 months of aestivation with major disruptions to mitochondrial cristae and increased clumping of nuclear material and increased infolding of the nuclear envelope. The present study demonstrates that the intestine of an aestivating frog responds to prolonged food deprivation during aestivation by reducing in size, presumably to reduce the energy expenditure of the organ.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of the total body mass and a major player in energy balance. It accounts for > 30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the pathophysiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidernia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease. (c) 2005 Published by Elsevier Ltd.