961 resultados para Elliptic Equations
Resumo:
The branching theory of solutions of certain nonlinear elliptic partial differential equations is developed, when the nonlinear term is perturbed from unforced to forced. We find families of branching points and the associated nonisolated solutions which emanate from a bifurcation point of the unforced problem. Nontrivial solution branches are constructed which contain the nonisolated solutions, and the branching is exhibited. An iteration procedure is used to establish the existence of these solutions, and a formal perturbation theory is shown to give asymptotically valid results. The stability of the solutions is examined and certain solution branches are shown to consist of minimal positive solutions. Other solution branches which do not contain branching points are also found in a neighborhood of the bifurcation point.
The qualitative features of branching points and their associated nonisolated solutions are used to obtain useful information about buckling of columns and arches. Global stability characteristics for the buckled equilibrium states of imperfect columns and arches are discussed. Asymptotic expansions for the imperfection sensitive buckling load of a column on a nonlinearly elastic foundation are found and rigorously justified.
Resumo:
The box scheme proposed by H. B. Keller is a numerical method for solving parabolic partial differential equations. We give a convergence proof of this scheme for the heat equation, for a linear parabolic system, and for a class of nonlinear parabolic equations. Von Neumann stability is shown to hold for the box scheme combined with the method of fractional steps to solve the two-dimensional heat equation. Computations were performed on Burgers' equation with three different initial conditions, and Richardson extrapolation is shown to be effective.
Resumo:
A theory of two-point boundary value problems analogous to the theory of initial value problems for stochastic ordinary differential equations whose solutions form Markov processes is developed. The theory of initial value problems consists of three main parts: the proof that the solution process is markovian and diffusive; the construction of the Kolmogorov or Fokker-Planck equation of the process; and the proof that the transistion probability density of the process is a unique solution of the Fokker-Planck equation.
It is assumed here that the stochastic differential equation under consideration has, as an initial value problem, a diffusive markovian solution process. When a given boundary value problem for this stochastic equation almost surely has unique solutions, we show that the solution process of the boundary value problem is also a diffusive Markov process. Since a boundary value problem, unlike an initial value problem, has no preferred direction for the parameter set, we find that there are two Fokker-Planck equations, one for each direction. It is shown that the density of the solution process of the boundary value problem is the unique simultaneous solution of this pair of Fokker-Planck equations.
This theory is then applied to the problem of a vibrating string with stochastic density.
Resumo:
Let l be any odd prime, and ζ a primitive l-th root of unity. Let C_l be the l-Sylow subgroup of the ideal class group of Q(ζ). The Teichmüller character w : Z_l → Z^*_l is given by w(x) = x (mod l), where w(x) is a p-1-st root of unity, and x ∈ Z_l. Under the action of this character, C_l decomposes as a direct sum of C^((i))_l, where C^((i))_l is the eigenspace corresponding to w^i. Let the order of C^((3))_l be l^h_3). The main result of this thesis is the following: For every n ≥ max( 1, h_3 ), the equation x^(ln) + y^(ln) + z^(ln) = 0 has no integral solutions (x,y,z) with l ≠ xyz. The same result is also proven with n ≥ max(1,h_5), under the assumption that C_l^((5)) is a cyclic group of order l^h_5. Applications of the methods used to prove the above results to the second case of Fermat's last theorem and to a Fermat-like equation in four variables are given.
The proof uses a series of ideas of H.S. Vandiver ([Vl],[V2]) along with a theorem of M. Kurihara [Ku] and some consequences of the proof of lwasawa's main conjecture for cyclotomic fields by B. Mazur and A. Wiles [MW]. In [V1] Vandiver claimed that the first case of Fermat's Last Theorem held for l if l did not divide the class number h^+ of the maximal real subfield of Q(e^(2πi/i)). The crucial gap in Vandiver's attempted proof that has been known to experts is explained, and complete proofs of all the results used from his papers are given.
Resumo:
Partial differential equations (PDEs) with multiscale coefficients are very difficult to solve due to the wide range of scales in the solutions. In the thesis, we propose some efficient numerical methods for both deterministic and stochastic PDEs based on the model reduction technique.
For the deterministic PDEs, the main purpose of our method is to derive an effective equation for the multiscale problem. An essential ingredient is to decompose the harmonic coordinate into a smooth part and a highly oscillatory part of which the magnitude is small. Such a decomposition plays a key role in our construction of the effective equation. We show that the solution to the effective equation is smooth, and could be resolved on a regular coarse mesh grid. Furthermore, we provide error analysis and show that the solution to the effective equation plus a correction term is close to the original multiscale solution.
For the stochastic PDEs, we propose the model reduction based data-driven stochastic method and multilevel Monte Carlo method. In the multiquery, setting and on the assumption that the ratio of the smallest scale and largest scale is not too small, we propose the multiscale data-driven stochastic method. We construct a data-driven stochastic basis and solve the coupled deterministic PDEs to obtain the solutions. For the tougher problems, we propose the multiscale multilevel Monte Carlo method. We apply the multilevel scheme to the effective equations and assemble the stiffness matrices efficiently on each coarse mesh grid. In both methods, the $\KL$ expansion plays an important role in extracting the main parts of some stochastic quantities.
For both the deterministic and stochastic PDEs, numerical results are presented to demonstrate the accuracy and robustness of the methods. We also show the computational time cost reduction in the numerical examples.
Resumo:
The Hamilton Jacobi Bellman (HJB) equation is central to stochastic optimal control (SOC) theory, yielding the optimal solution to general problems specified by known dynamics and a specified cost functional. Given the assumption of quadratic cost on the control input, it is well known that the HJB reduces to a particular partial differential equation (PDE). While powerful, this reduction is not commonly used as the PDE is of second order, is nonlinear, and examples exist where the problem may not have a solution in a classical sense. Furthermore, each state of the system appears as another dimension of the PDE, giving rise to the curse of dimensionality. Since the number of degrees of freedom required to solve the optimal control problem grows exponentially with dimension, the problem becomes intractable for systems with all but modest dimension.
In the last decade researchers have found that under certain, fairly non-restrictive structural assumptions, the HJB may be transformed into a linear PDE, with an interesting analogue in the discretized domain of Markov Decision Processes (MDP). The work presented in this thesis uses the linearity of this particular form of the HJB PDE to push the computational boundaries of stochastic optimal control.
This is done by crafting together previously disjoint lines of research in computation. The first of these is the use of Sum of Squares (SOS) techniques for synthesis of control policies. A candidate polynomial with variable coefficients is proposed as the solution to the stochastic optimal control problem. An SOS relaxation is then taken to the partial differential constraints, leading to a hierarchy of semidefinite relaxations with improving sub-optimality gap. The resulting approximate solutions are shown to be guaranteed over- and under-approximations for the optimal value function. It is shown that these results extend to arbitrary parabolic and elliptic PDEs, yielding a novel method for Uncertainty Quantification (UQ) of systems governed by partial differential constraints. Domain decomposition techniques are also made available, allowing for such problems to be solved via parallelization and low-order polynomials.
The optimization-based SOS technique is then contrasted with the Separated Representation (SR) approach from the applied mathematics community. The technique allows for systems of equations to be solved through a low-rank decomposition that results in algorithms that scale linearly with dimensionality. Its application in stochastic optimal control allows for previously uncomputable problems to be solved quickly, scaling to such complex systems as the Quadcopter and VTOL aircraft. This technique may be combined with the SOS approach, yielding not only a numerical technique, but also an analytical one that allows for entirely new classes of systems to be studied and for stability properties to be guaranteed.
The analysis of the linear HJB is completed by the study of its implications in application. It is shown that the HJB and a popular technique in robotics, the use of navigation functions, sit on opposite ends of a spectrum of optimization problems, upon which tradeoffs may be made in problem complexity. Analytical solutions to the HJB in these settings are available in simplified domains, yielding guidance towards optimality for approximation schemes. Finally, the use of HJB equations in temporal multi-task planning problems is investigated. It is demonstrated that such problems are reducible to a sequence of SOC problems linked via boundary conditions. The linearity of the PDE allows us to pre-compute control policy primitives and then compose them, at essentially zero cost, to satisfy a complex temporal logic specification.
Resumo:
The problem of determining probability density functions of general transformations of random processes is considered in this thesis. A method of solution is developed in which partial differential equations satisfied by the unknown density function are derived. These partial differential equations are interpreted as generalized forms of the classical Fokker-Planck-Kolmogorov equations and are shown to imply the classical equations for certain classes of Markov processes. Extensions of the generalized equations which overcome degeneracy occurring in the steady-state case are also obtained.
The equations of Darling and Siegert are derived as special cases of the generalized equations thereby providing unity to two previously existing theories. A technique for treating non-Markov processes by studying closely related Markov processes is proposed and is seen to yield the Darling and Siegert equations directly from the classical Fokker-Planck-Kolmogorov equations.
As illustrations of their applicability, the generalized Fokker-Planck-Kolmogorov equations are presented for certain joint probability density functions associated with the linear filter. These equations are solved for the density of the output of an arbitrary linear filter excited by Markov Gaussian noise and for the density of the output of an RC filter excited by the Poisson square wave. This latter density is also found by using the extensions of the generalized equations mentioned above. Finally, some new approaches for finding the output probability density function of an RC filter-limiter-RC filter system driven by white Gaussian noise are included. The results in this case exhibit the data required for complete solution and clearly illustrate some of the mathematical difficulties inherent to the use of the generalized equations.
Resumo:
A technique for obtaining approximate periodic solutions to nonlinear ordinary differential equations is investigated. The approach is based on defining an equivalent differential equation whose exact periodic solution is known. Emphasis is placed on the mathematical justification of the approach. The relationship between the differential equation error and the solution error is investigated, and, under certain conditions, bounds are obtained on the latter. The technique employed is to consider the equation governing the exact solution error as a two point boundary value problem. Among other things, the analysis indicates that if an exact periodic solution to the original system exists, it is always possible to bound the error by selecting an appropriate equivalent system.
Three equivalence criteria for minimizing the differential equation error are compared, namely, minimum mean square error, minimum mean absolute value error, and minimum maximum absolute value error. The problem is analyzed by way of example, and it is concluded that, on the average, the minimum mean square error is the most appropriate criterion to use.
A comparison is made between the use of linear and cubic auxiliary systems for obtaining approximate solutions. In the examples considered, the cubic system provides noticeable improvement over the linear system in describing periodic response.
A comparison of the present approach to some of the more classical techniques is included. It is shown that certain of the standard approaches where a solution form is assumed can yield erroneous qualitative results.
Resumo:
This thesis presents a novel class of algorithms for the solution of scattering and eigenvalue problems on general two-dimensional domains under a variety of boundary conditions, including non-smooth domains and certain "Zaremba" boundary conditions - for which Dirichlet and Neumann conditions are specified on various portions of the domain boundary. The theoretical basis of the methods for the Zaremba problems on smooth domains concern detailed information, which is put forth for the first time in this thesis, about the singularity structure of solutions of the Laplace operator under boundary conditions of Zaremba type. The new methods, which are based on use of Green functions and integral equations, incorporate a number of algorithmic innovations, including a fast and robust eigenvalue-search algorithm, use of the Fourier Continuation method for regularization of all smooth-domain Zaremba singularities, and newly derived quadrature rules which give rise to high-order convergence even around singular points for the Zaremba problem. The resulting algorithms enjoy high-order convergence, and they can tackle a variety of elliptic problems under general boundary conditions, including, for example, eigenvalue problems, scattering problems, and, in particular, eigenfunction expansion for time-domain problems in non-separable physical domains with mixed boundary conditions.
Resumo:
Part I
Numerical solutions to the S-limit equations for the helium ground state and excited triplet state and the hydride ion ground state are obtained with the second and fourth difference approximations. The results for the ground states are superior to previously reported values. The coupled equations resulting from the partial wave expansion of the exact helium atom wavefunction were solved giving accurate S-, P-, D-, F-, and G-limits. The G-limit is -2.90351 a.u. compared to the exact value of the energy of -2.90372 a.u.
Part II
The pair functions which determine the exact first-order wavefunction for the ground state of the three-electron atom are found with the matrix finite difference method. The second- and third-order energies for the (1s1s)1S, (1s2s)3S, and (1s2s)1S states of the two-electron atom are presented along with contour and perspective plots of the pair functions. The total energy for the three-electron atom with a nuclear charge Z is found to be E(Z) = -1.125•Z2 +1.022805•Z-0.408138-0.025515•(1/Z)+O(1/Z2)a.u.
Resumo:
Sufficient stability criteria for classes of parametrically excited differential equations are developed and applied to example problems of a dynamical nature.
Stability requirements are presented in terms of 1) the modulus of the amplitude of the parametric terms, 2) the modulus of the integral of the parametric terms and 3) the modulus of the derivative of the parametric terms.
The methods employed to show stability are Liapunov’s Direct Method and the Gronwall Lemma. The type of stability is generally referred to as asymptotic stability in the sense of Liapunov.
The results indicate that if the equation of the system with the parametric terms set equal to zero exhibits stability and possesses bounded operators, then the system will be stable under sufficiently small modulus of the parametric terms or sufficiently small modulus of the integral of the parametric terms (high frequency). On the other hand, if the equation of the system exhibits individual stability for all values that the parameter assumes in the time interval, then the actual system will be stable under sufficiently small modulus of the derivative of the parametric terms (slowly varying).
Resumo:
Vectorial Kukhtarev equations modified for the nonvolatile holographic recording in doubly doped crystals are analyzed, in which the bulk photovoltaic effect and the external electrical field are both considered. On the basis of small modulation approximation, both the analytic solution to the space-charge field with time in the recording phase and in the readout phase are deduced. The analytic solutions can be easily simplified to adapt the one-center model, and they have the same analytic expressions given those when the grating vector is along the optical axis. Based on the vectorial analyses of the band transport model an optimal recording direction is given to maximize the refractive index change in doubly doped LiNbO3:Fe: Mn crystals. (c) 2007 Optical Society of America.