992 resultados para Electron micrographs
Resumo:
Electron microscopic investigations have been carried out on superconducting YBa2Cu3 O7−δ, NdBa2Cu3 O7−δ and related oxides. All these orthorhombic oxides exhibit twin domains. Based on high resolution electron microscopy, it is shown that there is no significant change in the structure across the twins. Oxides of the La2−x Sr x (Ba x )CuO4 system do not show twins, but exhibit other types of defects. Twins appear to be characteristic of only the orthorhombic 123 structures.
Resumo:
Single crystal E.P.R. studies of copper as a dopant in lithium potassium sulphate, lithium ammonium sulphate and lithium sodium sulphate have been carried out from room temperature down to 77K. The three Jahn-Teller (JT) systems behave very similarly to one another. The room temperature dynamic JT spectra with giso = 2·19 ± 0·01 and Aiso = ±(33 ± 4) times 10-4 cm-1 transform around 247 K to spectra characterized by randomly frozen-in axial strains with g‖ = 2·4307 ± 0·0005, g⊥ = 2·083 ± 0·001, A‖ = ±(116 ± 2) times 10-4 cm-1 and A⊥ = ∓(14 ± 4) times 10-4 cm-1. We proposed that the low temperature phase (below 247 K) of each of these systems provides an example of a Jahn-Teller glass.
Resumo:
A detailed single-crystal EPR study of phase IV of lithium potassium sulphate below -138 degrees C has been carried out using NH3+, which substitutes for K+, as the paramagnetic probe. The spin-Hamiltonian parameters have been evaluated at -140 degrees C and yield an isotropic g=2.0034; (AH)XX=(AH)YY=25.3 G and (AH)ZZ=23.8 G; (AN)XX=8.1 G, (AN)YY=21.2 G and (AN)ZZ=25.9 G. In this phase there are 12 magnetically inequivalent K+ sites and their occurrence is ascribed to the loss of a c glide.
Resumo:
1,1,3-Trimethyl-2-thioxo-1,2-dihydronaphthale(1n)e adds to electron-rich olefins upon excitation to either Sz (PP*) or Sl (ns*) states. Excitation to S2 level resulted in the same mixture of products, namely thietane and 1,4-dithiane, as on excitation to S1 level. Addition occurs to the thiocarbonyl function and not to the carbon-carbon double bond. The addition is site-specific, and the formation of thietane is regiospecific. The ratio of thietane to 1,4-dithiane in the product mixture is dependent on the concentration of the thioenone. The addition is suggested to originate from the lowest triplet state (Tl) and involves diradical intermediates.
Resumo:
Electron-deficient olefins add to thioenone 1 upon m* excitation. Cycloaddition occurs to the thiocarbonyl chromophore preferentially from the less-hindered side to yield thietanes. Thietane formation is stereospecific and regioselective. This addition has been inferred to originate from the second excited singlet, S2(?rx*), state. The exciplex intermediacy has been inferred from the dependence of the fluorescence quenching rate constant on the electron-acceptor properties of the olefin. The observed site specificity and regioselectivity are rationalized on the basis of PMO theory. The observed photochemical behavior of thioenone is different from that of enones.
Resumo:
We present first-principles density-functional-theory-based calculations to determine the effects of the strength of on-site electron correlation, magnetic ordering, pressure and Se vacancies on phonon frequencies and electronic structure of FeSe1-x. The theoretical equilibrium structure (lattice parameters) of FeSe depends sensitively on the value of the Hubbard parameter U of on-site correlation and magnetic ordering. Our results suggest that there is a competition between different antiferromagnetic states due to comparable magnetic exchange couplings between first- and second-neighbor Fe sites. As a result, a short range order of stripe antiferromagnetic type is shown to be relevant to the normal state of FeSe at low temperature. We show that there is a strong spin-phonon coupling in FeSe (comparable to its superconducting transition temperature) as reflected in large changes in the frequencies of certain phonons with different magnetic ordering, which is used to explain the observed hardening of a Raman-active phonon at temperatures (similar to 100 K) where magnetic ordering sets in. The symmetry of the stripe antiferromagnetic phase permits an induced stress with orthorhombic symmetry, leading to orthorhombic strain as a secondary order parameter at the temperature of magnetic ordering. The presence of Se vacancies in FeSe gives rise to a large peak in the density of states near the Fermi energy, which could enhance the superconducting transition temperature within the BCS-like picture.
Resumo:
An experimental study to ascertain the role of external electron donor in methylene blue sensitized dichromated gelatin (MBDCG) holograms has been carried out. The required volume holographic transmission gratings in MBDCG have been recorded using 633-nm light from a He-Ne laser. Three well-known electron donors, namely, N, N-dimethylformamide (DMF); ethylenediaminetetraacetic acid (EDTA); triethanolamine (TEA), were used in this study. The variation of diffraction efficiency (η) as a function of light exposure (E) and concentration (C) of the electron donor under consideration was chosen as the figure of merit for judging the role of external electron donor in MBDCG holograms. A self-consistent analysis of the experimental results was carried out by recalling the various known facts about the photochemistry and the hologram formation in DSDCG and also DCG. The important findings and conclusions are as follows: (i) Each η vs E graph is a bell-shaped curve and its peak height is influenced in a characteristic manner by the external electron donor used. (ii) High diffraction efficiency/recording speed can be achieved in pure MBDCG holograms. (iii) The diffraction efficiency/recording speed achieved in electron donor sensitized MBDCG holograms did not show any significant improvement at all over that observed in pure MBDCG holograms. (iv) In electron donor sensitized MBDCG holograms, the electron donor used, depending on its type and concentration, appears to promote the process of cross-linking of gelatin molecules in a manner to either retain or deteriorate the refractive-index modulation achieved using pure MBDCG.
Resumo:
In some bimolecular diffusion-controlled electron transfer (ET) reactions such as ion recombination (IR), both solvent polarization relaxation and the mutual diffusion of the reacting ion pair may determine the rate and even the yield of the reaction. However, a full treatment with these two reaction coordinates is a challenging task and has been left mostly unsolved. In this work, we address this problem by developing a dynamic theory by combining the ideas from ET reaction literature and barrierless chemical reactions. Two-dimensional coupled Smoluchowski equations are employed to compute the time evolution of joint probability distribution for the reactant (P-(1)(X,R,t)) and the product (p((2))(X,R,t)), where X, as is usual in ET reactions, describes the solvent polarization coordinate and R is the distance between the reacting ion pair. The reaction is described by a reaction line (sink) which is a function of X and R obtained by imposing a condition of equal energy on the initial and final states of a reacting ion pair. The resulting two-dimensional coupled equations of motion have been solved numerically using an alternate direction implicit (ADI) scheme (Peaceman and Rachford, J. Soc. Ind. Appl. Math. 1955, 3, 28). The results reveal interesting interplay between polarization relaxation and translational dynamics. The following new results have been obtained. (i) For solvents with slow longitudinal polarization relaxation, the escape probability decreases drastically as the polarization relaxation time increases. We attribute this to caging by polarization of the surrounding solvent, As expected, for the solvents having fast polarization relaxation, the escape probability is independent of the polarization relaxation time. (ii) In the slow relaxation limit, there is a significant dependence of escape probability and average rate on the initial solvent polarization, again displaying the effects of polarization caging. Escape probability increases, and the average rate decreases on increasing the initial polarization. Again, in the fast polarization relaxation limit, there is no effect of initial polarization on the escape probability and the average rate of IR. (iii) For normal and barrierless regions the dependence of escape probability and the rate of IR on initial polarization is stronger than in the inverted region. (iv) Because of the involvement of dynamics along R coordinate, the asymmetrical parabolic (that is, non-Marcus) energy gap dependence of the rate is observed.
Resumo:
The electron paramagnetic resonance (EPR) of ternary oxides of Cu(II) has been studied between 4.2 and 300 K. The systems include those with 180 degrees Cu-O-Cu interactions (such as Ln2CuO4, Sr2CuO2Cl2, Sr2CuO3 and Ca2CuO3) or 90 degrees Cu-O-Cu interactions (such as Y2Cu2O5 or BaCuO2) as well as those in which the Cu2+ ions are isolated (such as Y2BaCuO5, La1.8Ba1.2Cu0.9O4.8 and Bi2CuO4). The change in the EPR susceptibility as a function of temperature is compared with that of the DC magnetic susceptibility. Compounds with extended 180 degrees Cu-O-Cu interactions which have a low susceptibility also do not give EPR signals below room temperature. For compounds such as Ca2CuO3 with one-dimensional 180 degrees Cu-O-Cu interactions a weak EPR signal is found the temperature dependence of which is very different from that of the DC susceptibility. For Y2BaCuO5 as well as for La1.8Ba1.2Cu0.9O4.8 the EPR susceptibility as well as its temperature variation are comparable with those of the static susceptibility near room temperature but very different at low temperatures. Bi2CuO4 also shows a similar behaviour. In contrast, for Y2Cu2O5, in which the copper ions have a very distorted nonsquare-planar configuration, the EPR and the static susceptibility show very similar temperature dependences. In general, compounds in which the copper ions have a square-planar geometry give no EPR signal in the ground state (0 K) while those with a distortion from square-planar geometry do give a signal. The results are analysed in the light of recent MS Xalpha calculations on CuO46- square-planar clusters with various Cu-O distances as well as distortions. It is suggested that in square-planar geometry the ground state has an unpaired electron in anionic orbitals which is EPR inactive. Competing interactions from other cations, an increase in Cu-O distance or distortions from square-planar geometry stabilise another state which has considerably more Cu 3d character. These states are EPR active. Both these states, however, are magnetic. For isolated CuO46- clusters the magnetic interactions seem to involve only the states which have mainly anionic character.
Resumo:
The present paper deals with the study of the effects of electron (8 MeV) irradiation on the dielectric and ferroelectric properties of PbZrO3 thin films grown by sol-gel technique. The films were (0.62 mu m thick) subjected to electron irradiation using Microtron accelerator (delivered dose 80, 100, 120 kGy). The films were well crystallized prior to and after electron irradiation. However, local amorphization was observed after irradiation. There is an appreciable change in the dielectric constant after irradiation with different delivered doses. The dielectric loss showed significant frequency dispersion for both unirradiated and electron irradiated films. T (c) was found to shift towards higher temperature with increasing delivered dose. The effect of radiation induced increase of E >'(T) is related to an internal bias field, which is caused by radiation induced charges trapped at grain boundaries. The double butterfly loop is retained even after electron irradiation to the different delivered doses. The broader hysteresis loop seems to be related to radiation induced charges causing an enhanced space charge polarization. Radiation-induced oxygen vacancies do not change the general shape of the AFE hysteresis loop but they increase P (s) of the hysteresis at the electric field forced AFE to FE phase transition. We attribute the changes in the dielectric properties to the structural defects such as oxygen vacancies and radiation induced charges. The shift in T (C), increase in dielectric constant, broader hysteresis loop, and increase in P (r) can be related to radiation induced charges causing space charge polarization. Double butterfly and hysteresis loops were retained indicative of AFE nature of the films.
Resumo:
The influence of concentration and size of sp (2) cluster on the transport properties and electron field emissions of amorphous carbon films have been investigated. The observed insulating to metallic behaviour from reduced activation energy derived from transport measurement and threshold field for electron emission of a-C films can be explained in terms of improvements in the connectivity between sp (2) clusters. The connectivity is resulted by the cluster concentration and size. The concentration and size of sp (2) content cluster is regulated by the coalescence of carbon globules into clusters, which evolves with deposition conditions.
Resumo:
The migrating electrons in biological systems normally are extraneous and taking this into account the electron delocalisation across the hydrogen bonds in proteins is re-examined. It is seen that an extraneous electron can travel rapidly via the low-lying virtual orbitals of the hydrogen-bonded π-electronic structure of peptide units in proteins. The frequency of electron transfer decreases slowly with an increase in the path length. However, the coupling of electron and protonic motions enhances this frequency. Transfer of electrons across the hydrogen bonds in accordance with the double-exchange mechanism does not appear to be possible. This theory offers a possibility for an extraneous electron to transfer within protein structures.
Resumo:
For the first time, the impact of energy quantisation in single electron transistor (SET) island on the performance of hybrid complementary metal oxide semiconductor (CMOS)-SET transistor circuits has been studied. It has been shown through simple analytical models that energy quantisation primarily increases the Coulomb Blockade area and Coulomb Blockade oscillation periodicity of the SET device and thus influences the performance of hybrid CMOS-SET circuits. A novel computer aided design (CAD) framework has been developed for hybrid CMOS-SET co-simulation, which uses Monte Carlo (MC) simulator for SET devices along with conventional SPICE for metal oxide semiconductor devices. Using this co-simulation framework, the effects of energy quantisation have been studied for some hybrid circuits, namely, SETMOS, multiband voltage filter and multiple valued logic circuits. Although energy quantisation immensely deteriorates the performance of the hybrid circuits, it has been shown that the performance degradation because of energy quantisation can be compensated by properly tuning the bias current of the current-biased SET devices within the hybrid CMOS-SET circuits. Although this study is primarily done by exhaustive MC simulation, effort has also been put to develop first-order compact model for SET that includes energy quantisation effects. Finally, it has been demonstrated that one can predict the SET behaviour under energy quantisation with reasonable accuracy by slightly modifying the existing SET compact models that are valid for metallic devices having continuous energy states.
Resumo:
The nature of the chemisorbed states of nitrogen on various transition metal surfaces is discussed comprehensively on the basis of the results of electron spectroscopic investigations augmented by those from other techniques such as LEED and thermal desorption. A brief discussion of the photoemission spectra of free N2, a comparison of adsorbed N2 and CO as well as of physisorption of N2 on metal surfaces is also presented. We discuss the chemisorption of N2 on the surfaces of certain metals (e.g. Ni, Fe, Ru and W) in some detail, paying considerable attention to the effect of electropositive and electronegative surface modifiers. Features of the various chemisorbed states (one or more weakly chemisorbed gamma-states, strongly chemisorbed alpha-states with bond orders between 1 and 2. and dissociative chemisorbed beta-states) on different surfaces are described and relations between them indicated. While the gamma-state could be a precursor of the alpha-state, the alpha-state could be the precursor of the beta-state and this kind of information is of direct relevance to ammonia synthesis. The nature of adsorption of N2 on the surfaces of some metals (e.g. Cr, Co) deserves further study and such investigations might as well suggest alternative catalysts for ammonia synthesis.