978 resultados para Electron beam tomography


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The single electron transistor (SET) is a charge-based device that may complement the dominant metal-oxide-semiconductor field effect transistor (MOSFET) technology. As the cost of scaling MOSFET to smaller dimensions are rising and the the basic functionality of MOSFET is encountering numerous challenges at dimensions smaller than 10nm, the SET has shown the potential to become the next generation device which operates based on the tunneling of electrons. Since the electron transfer mechanism of a SET device is based on the non-dissipative electron tunneling effect, the power consumption of a SET device is extremely low, estimated to be on the order of 10^-18J. The objectives of this research are to demonstrate technologies that would enable the mass produce of SET devices that are operational at room temperature and to integrate these devices on top of an active complementary-MOSFET (CMOS) substrate. To achieve these goals, two fabrication techniques are considered in this work. The Focus Ion Beam (FIB) technique is used to fabricate the islands and the tunnel junctions of the SET device. A Ultra-Violet (UV) light based Nano-Imprint Lithography (NIL) call Step-and-Flash- Imprint Lithography (SFIL) is used to fabricate the interconnections of the SET devices. Combining these two techniques, a full array of SET devices are fabricated on a planar substrate. Test and characterization of the SET devices has shown consistent Coulomb blockade effect, an important single electron characteristic. To realize a room temperature operational SET device that function as a logic device to work along CMOS, it is important to know the device behavior at different temperatures. Based on the theory developed for a single island SET device, a thermal analysis is carried out on the multi-island SET device and the observation of changes in Coulomb blockade effect is presented. The results show that the multi-island SET device operation highly depends on temperature. The important parameters that determine the SET operation is the effective capacitance Ceff and tunneling resistance Rt . These two parameters lead to the tunneling rate of an electron in the SET device, Γ. To obtain an accurate model for SET operation, the effects of the deviation in dimensions, the trap states in the insulation, and the background charge effect have to be taken into consideration. The theoretical and experimental evidence for these non-ideal effects are presented in this work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The single-electron transistor (SET) is one of the best candidates for future nano electronic circuits because of its ultralow power consumption, small size and unique functionality. SET devices operate on the principle of Coulomb blockade, which is more prominent at dimensions of a few nano meters. Typically, the SET device consists of two capacitively coupled ultra-small tunnel junctions with a nano island between them. In order to observe the Coulomb blockade effects in a SET device the charging energy of the device has to be greater that the thermal energy. This condition limits the operation of most of the existing SET devices to cryogenic temperatures. Room temperature operation of SET devices requires sub-10nm nano-islands due to the inverse dependence of charging energy on the radius of the conducting nano-island. Fabrication of sub-10nm structures using lithography processes is still a technological challenge. In the present investigation, Focused Ion Beam based etch and deposition technology is used to fabricate single electron transistors devices operating at room temperature. The SET device incorporates an array of tungsten nano-islands with an average diameter of 8nm. The fabricated devices are characterized at room temperature and clear Coulomb blockade and Coulomb oscillations are observed. An improvement in the resolution limitation of the FIB etching process is demonstrated by optimizing the thickness of the active layer. SET devices with structural and topological variation are developed to explore their impact on the behavior of the device. The threshold voltage of the device was minimized to ~500mV by minimizing the source-drain gap of the device to 17nm. Vertical source and drain terminals are fabricated to realize single-dot based SET device. A unique process flow is developed to fabricate Si dot based SET devices for better gate controllability in the device characteristic. The device vi parameters of the fabricated devices are extracted by using a conductance model. Finally, characteristic of these devices are validated with the simulated data from theoretical modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated whether measurements on conventional frontal radiographs are comparable with measurements on cone beam computed tomography (CBCT)-constructed frontal cephalometric radiographs taken from dry human skulls. CBCT scans and conventional frontal cephalometric radiographs were made of 40 dry skulls. With I-Cat Vision((R)) software, a cephalometric radiograph was constructed from the CBCT scan. Standard cephalometric software was used to identify landmarks and calculate ratios and angles. The same operator identified 10 landmarks on both types of cephalometric radiographs on all Images 5 times with a time-interval of 1 week. Intra-observer reliability was acceptable for all measurements. The reproducibility of the measurements on the frontal radiographs obtained from the CBCT scans was higher than those on conventional frontal radiographs. There is a statistically significant and clinically relevant difference between measurements on conventional and constructed frontal radiographs. There is a clinically relevant difference between angular measurements performed on conventional frontal cephalometric radiographs, compared with measurements on frontal cephalometric radiographs constructed from CBCT scans, owing to different positioning of patients in both devices. Positioning of the patient in the CBCT device appears to be an important factor in cases where a 2D projection of the 3D scan is made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE The purpose of the present study was to evaluate the thickness and anatomic characteristics of the sinus membrane using cone beam computed tomography (CBCT) in patients evaluated for implant surgery in the posterior maxilla. MATERIALS AND METHODS The study included 131 consecutive patients referred for dental implant placement in the posterior maxilla. A total of 138 CBCT images was obtained using fields of view of 4 × 4 cm, 6 × 6 cm, or 8 × 8 cm. Reformatted sagittal CBCT slices were analyzed with regard to the thickness and characteristics of the sinus membrane at single-tooth gaps in the posterior maxilla. Factors that might influence the dimensions of the sinus membrane, such as age, sex, endodontic status, and the season, were analyzed. RESULTS The mean thickness of the maxillary sinus mucosa varied between 2.1 and 2.69 mm in the three locations analyzed. Fewer than half of the evaluated sinuses exhibited a healthy mucosa (49 of 138, or 35.51%). Most of the pathologic findings were flat, shallow thickenings (63 of 138, or 45.65%). Sex did not influence the thickness of the sinus membrane at the root tips of the premolars or at single-tooth gaps, but there was a statistically significant correlation in the region of the maxillary molars. No other evaluated factors had a statistically significant effect on the dimensions of the antral mucosa. CONCLUSIONS In the present study, sex was the only factor influencing the dimension of the sinus membrane, whereas patient age, season, and the endodontic status of neighboring teeth had no significant effect on the thickness of the antral mucosa. Future studies should address which types of mucosal thickening require interdisciplinary therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION The aims of this study were to compare lateral cephalograms with other radiologic methods for diagnosing suspected fusions of the cervical spine and to validate the assessment of congenital fusions and osteoarthritic changes against the anatomic truth. METHODS Four cadaver heads were selected with fusion of vertebrae C2 and C3 seen on a lateral cephalogram. Multidetector computed tomography (MDCT) and cone-beam computed tomography (CBCT) were performed and assessed by 5 general radiologists and 5 oral radiologists, respectively. Vertebrae C2 and C3 were examined for osseous fusions, and the left and right facet joints were diagnosed for osteoarthritis. Subsequently, the C2 and C3 were macerated and appraised by a pathologist. Descriptive analysis was performed, and interrater agreements between and within the groups were computed. RESULTS All macerated specimens showed osteoarthritic findings of varying degrees, but no congenital bony fusion. All observers agreed that no fusion was found on MDCT or CBCT. They disagreed on the prevalence of osteoarthritic deformities (general radiologists/MDCT, 100%; oral radiologists/CBCT, 93.3%) and joint space assessment in the facet joints (kappa = 0.452). The agreement within the rater groups differed considerably (general radiologists/MDCT, kappa = 0.612; oral radiologists/CBCT, kappa = 0.240). CONCLUSIONS Lateral cephalograms do not provide dependable data to assess the cervical spine for fusions and cause false-positive detections. Both MDCT interpreted by general radiologists and CBCT interpreted by oral radiologists are reliable methods to exclude potential fusions. Degenerative osteoarthritic changes are diagnosed more accurately and consistently by general radiologists evaluating MDCT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: This study sought to assess the vascular response of overlapping Absorb stents compared with overlapping newer-generation everolimus-eluting metallic platform stents (Xience V [XV]) in a porcine coronary artery model. BACKGROUND: The everolimus-eluting bioresorbable vascular scaffold (Absorb) is a novel approach to treating coronary lesions. A persistent inflammatory response, fibrin deposition, and delayed endothelialization have been reported with overlapping first-generation drug-eluting stents. METHODS: Forty-one overlapping Absorb and overlapping Xience V (XV) devices (3.0 × 12 mm) were implanted in the main coronary arteries of 17 nonatherosclerotic pigs with 10% overstretch. Implanted coronary arteries were evaluated by optical coherence tomography (OCT) at 28 days (Absorb n = 11, XV n = 7) and 90 days (Absorb n = 11, XV n = 8), with immediate histological evaluation following euthanasia at the same time points. One animal from each time point was evaluated with scanning electron microscopy alone. A total of 1,407 cross sections were analyzed by OCT and 148 cross sections analyzed histologically. RESULTS: At 28 days in the overlap, OCT analyses indicated 80.1% of Absorb struts and 99.4% of XV struts to be covered (p < 0.0001), corresponding to histological observations of struts with cellular coverage of 75.4% and 99.6%, respectively (p < 0.001). Uncovered struts were almost exclusively related to the presence of "stacked" Absorb struts, that is, with a direct overlay configuration. At 90 days, overlapping Absorb and overlapping XV struts demonstrated >99% strut coverage by OCT and histology, with no evidence of a significant inflammatory process, and comparable % volume obstructions. CONCLUSIONS: In porcine coronary arteries implanted with overlapping Absorb or overlapping XV struts, strut coverage is delayed at 28 days in overlapping Absorb, dependent on the overlay configuration of the thicker Absorb struts. At 90 days, both overlapping Absorb and overlapping XV have comparable strut coverage. The implications of increased strut thickness may have important clinical and design considerations for bioresorbable platforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soft X-ray lasing across a Ni-like plasma gain-medium requires optimum electron temperature and density for attaining to the Ni-like ion stage and for population inversion in the View the MathML source3d94d1(J=0)→3d94p1(J=1) laser transition. Various scaling laws, function of operating parameters, were compared with respect to their predictions for optimum temperatures and densities. It is shown that the widely adopted local thermodynamic equilibrium (LTE) model underestimates the optimum plasma-lasing conditions. On the other hand, non-LTE models, especially when complemented with dielectronic recombination, provided accurate prediction of the optimum plasma-lasing conditions. It is further shown that, for targets with Z equal or greater than the rare-earth elements (e.g. Sm), the optimum electron density for plasma-lasing is not accessible for pump-pulses at View the MathML sourceλ=1ω=1μm. This observation explains a fundamental difficulty in saturating the wavelength of plasma-based X-ray lasers below 6.8 nm, unless using 2ω2ω pumping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sound speed as a diagnostic marker for various diseases of human tissue has been of interest for a while. Up to now, mostly transmission ultrasound computed tomography (UCT) was able to detect spatially resolved sound speed, and its promise as a diagnostic tool has been demonstrated. However, UCT is limited to acoustically transparent samples such as the breast. We present a novel technique where spatially resolved detection of sound speed can be achieved using conventional pulse-echo equipment in reflection mode. For this purpose, pulse-echo images are acquired under various transmit beam directions and a two-dimensional map of the sound speed is reconstructed from the changing phase of local echoes using a direct reconstruction method. Phantom results demonstrate that a high spatial resolution (1 mm) and contrast (0.5 % of average sound speed) can be achieved suitable for diagnostic purposes. In comparison to previous reflection-mode based methods, CUTE works also in a situation with only diffuse echoes, and its direct reconstruction algorithm enables real-time application. This makes it suitable as an addition to conventional clinical ultrasound where it has the potential to benefit diagnosis in a multimodal approach. In addition, knowledge of the spatial distribution of sound speed allows full aberration correction and thus improved spatial resolution and contrast of conventional B-mode ultrasound. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short range nucleon-nucleon correlations in nuclei (NN SRC) carry important information on nuclear structure and dynamics. NN SRC have been extensively probed through two-nucleon knock- out reactions in both pion and electron scattering experiments. We report here on the detection of two-nucleon knock-out events from neutrino interactions and discuss their topological features as possibly involving NN SRC content in the target argon nuclei. The ArgoNeuT detector in the Main Injector neutrino beam at Fermilab has recorded a sample of 30 fully reconstructed charged current events where the leading muon is accompanied by a pair of protons at the interaction vertex, 19 of which have both protons above the Fermi momentum of the Ar nucleus. Out of these 19 events, four are found with the two protons in a strictly back-to-back high momenta configuration directly observed in the final state and can be associated to nucleon Resonance pionless mechanisms involving a pre-existing short range correlated np pair in the nucleus. Another fraction (four events) of the remaining 15 events have a reconstructed back-to-back configuration of a np pair in the initial state, a signature compatible with one-body Quasi Elastic interaction on a neutron in a SRC pair. The detection of these two subsamples of the collected (mu- + 2p) events suggests that mechanisms directly involving nucleon-nucleon SRC pairs in the nucleus are active and can be efficiently explored in neutrino-argon interactions with the LAr TPC technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The limitations of diagnostic echo ultrasound have motivated research into novel modalities that complement ultrasound in a multimodal device. One promising candidate is speed of sound imaging, which has been found to reveal structural changes in diseased tissue. Transmission ultrasound tomography shows speed of sound spatially resolved, but is limited to the acoustically transparent breast. We present a novel method by which speed-of-sound imaging is possible using classic pulse-echo equipment, facilitating new clinical applications and the combination with state-of-the art diagnostic ultrasound. Pulse-echo images are reconstructed while scanning the tissue under various angles using transmit beam steering. Differences in average sound speed along different transmit directions are reflected in the local echo phase, which allows a 2-D reconstruction of the sound speed. In the present proof-of-principle study, we describe a contrast resolution of 0.6% of average sound speed and a spatial resolution of 1 mm (laterally) × 3 mm (axially), suitable for diagnostic applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computed ultrasound tomography in echo-mode (CUTE) allows imaging the speed of sound inside tissue using hand-held pulse-echo ultrasound. This technique is based on measuring the changing local phase of beamformed echoes when changing the transmit beam steering angle. Phantom results have shown a spatial resolution and contrast that could qualify CUTE as a promising novel diagnostic modality in combination with B-mode ultrasound. Unfortunately, the large intensity range of several tens of dB that is encountered in clinical images poses difficulties to echo phase tracking and results in severe artefacts. In this paper we propose a modification to the original technique by which more robust echo tracking can be achieved, and we demonstrate in phantom experiments that dynamic range artefacts are largely eliminated. Dynamic range artefact reduction also allowed for the first time a clinical implementation of CUTE with sufficient contrast to reproducibly distinguish the different speed of sound in different tissue layers of the abdominal wall and the neck.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION Apical surgery is an important treatment option for teeth with post-treatment periodontitis. Although apical surgery involves root-end resection, no morphometric data are yet available about root-end resection and its impact on the root-to-crown ratio (RCR). The present study assessed the length of apicectomy and calculated the loss of root length and changes of RCR after apical surgery. METHODS In a prospective clinical study, cone-beam computed tomography scans were taken preoperatively and postoperatively. From these images, the crown and root lengths of 61 roots (54 teeth in 47 patients) were measured before and after apical surgery. Data were collected relative to the cementoenamel junction (CEJ) as well as to the crestal bone level (CBL). One observer took all measurements twice (to calculate the intraobserver variability), and the means were used for further analysis. The following parameters were assessed for all treated teeth as well as for specific tooth groups: length of root-end resection and percentage change of root length, preoperative and postoperative RCRs, and percentage change of RCR after apical surgery. RESULTS The mean length of root-end resection was 3.58 ± 1.43 mm (relative to the CBL). This amounted to a loss of 33.2% of clinical and 26% of anatomic root length. There was an overall significant difference between the tooth groups (P < .05). There was also a statistically significant difference comparing mandibular and maxillary teeth (P < .05), but not for incisors/canines versus premolars/molars (P = .125). The mean preoperative and postoperative RCRs (relative to CEJ) were 1.83 and 1.35, respectively (P < .001). With regard to the CBL reference, the mean preoperative and postoperative RCRs were 1.08 and 0.71 (CBL), respectively (P < .001). The calculated changes of RCR after apical surgery were 24.8% relative to CEJ and 33.3% relative to CBL (P < .001). Across the different tooth groups, the mean RCR was not significantly different (P = .244 for CEJ and 0.114 for CBL). CONCLUSIONS This CBCT-based study demonstrated that the RCR is significantly changed after root-end resection in apical surgery irrespective of the clinical (CBL) or anatomic (CEJ) reference levels. The lowest, and thus clinically most critical, postoperative RCR was observed in maxillary incisors. Future clinical studies need to show the impact of resection length and RCR changes on the outcome of apical surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the development of the water calorimeter direct measurement of absorbed dose in water becomes possible. This could lead to the establishment of an absorbed dose rather than an exposure related standard for ionization chambers for high energy electrons and photons. In changing to an absorbed dose standard it is necessary to investigate the effect of different parameters, among which are the energy dependence, the air volume, wall thickness and material of the chamber. The effect of these parameters is experimentally studied and presented for several commercially available chambers and one experimental chamber, for photons up to 25 MV and electrons up to 20 MeV, using a water calorimeter as the absorbed dose standard and the most recent formalism to calculate the absorbed dose with ion chambers.^ For electron beams, the dose measured with the calorimeter was 1% lower than the dose calculated with the chambers, independent of beam energy and chamber.^ For photon beams, the absorbed dose measured with the calorimeter was 3.8% higher than the absorbed dose calculated from the chamber readings. Such differences were found to be chamber and energy independent.^ The results for the photons were found to be statistically different from the results with the electron beams. Such difference could not be attributed to a difference in the calorimeter response. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project assessed the effectiveness of polymer gel dosimeters as tools for measuring the dose deposited by and LET of a proton beam. A total of three BANG® dosimeter formulations were evaluated: BANG®-3-Pro-2 BANGkits™ for dose measurement and two BANG®-3 variants, the LET-Baseline and LET-Meter dosimeters, for LET measurement. All dosimeters were read out using an OCT scanner. The basic characteristics of the BANGkits™ were assessed in a series of photon and electron irradiations. The dose-response relationship was found to be sigmoidal with a threshold for response of approximately 15 cGy. The active region of the dosimeter, the volume in which dosimeter response is not inhibited by oxygen, was found to make up roughly one fourth of the total dosimeter volume. Delivering a dose across multiple fractions was found to yield a greater response than delivering the same dose in a single irradiation. The dosimeter was found to accurately measure a dose distribution produced by overlapping photon fields, yielding gamma pass rates of 95.4% and 93.1% from two planar gamma analyses. Proton irradiations were performed for measurements of proton dose and LET. Initial irradiations performed through the side of a dosimeter led to OCT artifacts. Gamma pass rates of 85.7% and 89.9% were observed in two planar gamma analyses. In irradiations performed through the base of a dosimeter, gel response was found to increase with height in the dosimeter, even in areas of constant dose. After a correction was applied, gamma pass rates of 94.6% and 99.3% were observed in two planar gamma analyses. Absolute dose measurements were substantially higher (33%-100%) than the delivered doses for proton irradiations. Issues encountered while calibrating the LET-Meter gel restricted analysis of the LET measurement data to the SOBP of a proton beam. LET-Meter overresponse was found to increase linearly with track-average LET across the LET range that could be investigated (1.5 keV/micron – 3.5 keV/micron).