954 resultados para Electric contactors
Resumo:
Herein we present a study on the physical/chemical properties of a new Deep Eutectic Solvent (DES) based on N-methylacetamide (MAc) and lithium bis[(trifluoromethyl)sulfonyl]imide (LiTFSI). Due to its interesting properties, such as wide liquid-phase range from -60°C to 280°C, low vapor pressure, and high ionic conductivity up to 28.4mScm at 150°C and at x=1/4, this solution can be practically used as electrolyte for electrochemical storage systems such as electric double-layer capacitors (EDLCs) and/or lithium ion batteries (LiBs). Firstly, relationships between its transport properties (conductivity and viscosity) as a function of composition and temperature were discussed through Arrhenius' Law and Vogel-Tamman-Fulcher (VTF) equations, as well as by using the Walden classification. From this investigation, it appears that this complex electrolyte possesses a number of excellent transport properties, like a superionic character for example. Based on which, we then evaluated its electrochemical performances as electrolyte for EDLCs and LiBs applications by using activated carbon (AC) and lithium iron phosphate (LiFePO) electrodes, respectively. These results demonstrate that this electrolyte has a good compatibility with both electrodes (AC and LiFePO) in each testing cell driven also by excellent electrochemical properties in specific capacitance, rate and cycling performances, indicating that the LiTFSI/MAc DES can be a promising electrolyte for EDLCs and LiBs applications especially for those requiring high safety and stability. © 2013 Elsevier Ltd.
Resumo:
Environmental concerns and fossil fuel shortage put pressure on both power and transportation systems. Electric vehicles (EVs) are thought to be a good solution to these problems. With EV adoption, energy flow is two way: from grid to vehicle and from vehicle to grid, which is known as vehicle-to-grid (V2G) today. This paper considers electric power systems and provides a review of the impact of V2G on power system stability. The concept and basics of V2G technology are introduced at first, followed by a description of EV application in the world. Several technical issues are detailed in V2G modeling and capacity forecasting, steady-state analysis and stability analysis. Research trends of such topics are declared at last.
Resumo:
A micro-grid is an autonomous system which can be operated and connected to an external system or isolated with the help of energy storage systems (ESSs). While the daily output of distributed generators (DGs) strongly depends on the temporal distribution of natural resources such as wind and solar, unregulated electric vehicle (EV) charging demand will deteriorate the imbalance between the daily load and generation curves. In this paper, a statistical model is presented to describe daily EV charging/discharging behaviour. An optimisation problem is proposed to obtain economic operation for the micro-grid based on this model. In day-ahead scheduling, with estimated information of power generation and load demand, optimal charging/discharging of EVs during 24 hours is obtained. A series of numerical optimization solutions in different scenarios is achieved by serial quadratic programming. The results show that optimal charging/discharging of EVs, a daily load curve can better track the generation curve and the network loss and required ESS capacity are both decreased. The paper also demonstrates cost benefits for EVs and operators.
Resumo:
A continuous cell-line has been shown to be adaptable to preparation of supernatants containing lymphokine activities. Separation and partial purification of migration inhibiting, colony stimulating and interferon activities from such preparations has been achieved by the use of density gradient iso-electric focusing.
Resumo:
Hybrid vehicles can use energy storage systems to disconnect the engine from the driving wheels of the vehicle. This enables the engine to be run closer to its optimum operating condition, but fuel energy is still wasted through the exhaust system as heat. The use of a turbogenerator on the exhaust line addresses this problem by capturing some of the otherwise wasted heat and converting it into useful electrical energy.
This paper outlines the work undertaken to model the engine of a diesel-electric hybrid bus, coupled with a hybrid powertrain model which analysed the performance of a hybrid vehicle over a drive-cycle. The distribution of the turbogenerator power was analysed along with the effect on the fuel consumption of the bus. This showed that including the turbogenerator produced a 2.4% reduction in fuel consumption over a typical drive-cycle.
The hybrid bus generator was then optimised to improve the performance of the combined vehicle/engine package and the turbogenerator was then shown to offer a 3.0% reduction in fuel consumption. The financial benefits of using the turbogenerator were also considered in terms of fuel savings for operators. For an average bus, a turbogenerator could reduce fuel costs by around £1200 per year.
Resumo:
Thin single-crystal lamellae cut from Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 ceramic samples have been integrated into simple coplanar capacitor devices. The influence of applied electric and magnetic fields on ferroelectric domain configurations has been mapped, using piezoresponse force microscopy. The extent to which magnetic fields alter the ferroelectric domains was found to be strongly history dependent: after switching had been induced by applying electric fields, the susceptibility of the domains to change under a magnetic field (the effective magnetoelectric coupling parameter) was large. Such large, magnetic field-induced changes resulted in a remanent domain state very similar to the remanent state induced by an electric field. Subsequent magnetic field reversal induced more modest ferroelectric switching.
Resumo:
In this work we examine, for the first time, the molar conductivity behavior of the deeply supercooled room temperature ionic liquid [C4mim][NTf2] in the temperature, pressure and volume thermodynamic space in terms of density scaling (TVγ)−1 combined with the equation of state (EOS). The exponent γσ determined from the Avramov model analysis is compared with the coefficient obtained from the viscosity studies carried out at moderate temperatures. Therefore, the experimental results presented herein provide the answer to the long-standing question regarding the validity of thermodynamic scaling of ionic liquids over a wide temperature range, i.e. from the normal liquid state to the glass transition point. Finally, we investigate the relationship between the dynamic and thermodynamic properties of [C4mim][NTf2] represented by scaling exponent γ and Grüneisen constant γG, respectively.
Resumo:
This paper addresses the problems of effective in situ measurement of the real-time strain for bridge weigh in motion in reinforced concrete bridge structures through the use of optical fiber sensor systems. By undertaking a series of tests, coupled with dynamic loading, the performance of fiber Bragg grating-based sensor systems with various amplification techniques were investigated. In recent years, structural health monitoring (SHM) systems have been developed to monitor bridge deterioration, to assess load levels and hence extend bridge life and safety. Conventional SHM systems, based on measuring strain, can be used to improve knowledge of the bridge's capacity to resist loads but generally give no information on the causes of any increase in stresses. Therefore, it is necessary to find accurate sensors capable of capturing peak strains under dynamic load and suitable methods for attaching these strain sensors to existing and new bridge structures. Additionally, it is important to ensure accurate strain transfer between concrete and steel, adhesives layer, and strain sensor. The results show the benefits in the use of optical fiber networks under these circumstances and their ability to deliver data when conventional sensors cannot capture accurate strains and/or peak strains.
Resumo:
Plug-in hybrid electric vehicles (PHEVs) provide much promise in reducing greenhouse gas emissions and, thus, are a focal point of research and development. Existing on-board charging capacity is effective but requires the use of several power conversion devices and power converters, which reduce reliability and cost efficiency. This paper presents a novel three-phase switched reluctance (SR) motor drive with integrated charging functions (including internal combustion engine and grid charging). The electrical energy flow within the drivetrain is controlled by a power electronic converter with less power switching devices and magnetic devices. It allows the desired energy conversion between the engine generator, the battery, and the SR motor under different operation modes. Battery-charging techniques are developed to operate under both motor-driving mode and standstill-charging mode. During the magnetization mode, the machine's phase windings are energized by the dc-link voltage. The power converter and the machine phase windings are controlled with a three-phase relay to enable the use of the ac-dc rectifier. The power converter can work as a buck-boost-type or a buck-type dc-dc converter for charging the battery. Simulation results in MATLAB/Simulink and experiments on a 3-kW SR motor validate the effectiveness of the proposed technologies, which may have significant economic implications and improve the PHEVs' market acceptance
Resumo:
This paper proposes an in situ diagnostic and prognostic (D&P) technology to monitor the health condition of insulated gate bipolar transistors (IGBTs) used in EVs with a focus on the IGBTs' solder layer fatigue. IGBTs' thermal impedance and the junction temperature can be used as health indicators for through-life condition monitoring (CM) where the terminal characteristics are measured and the devices' internal temperature-sensitive parameters are employed as temperature sensors to estimate the junction temperature. An auxiliary power supply unit, which can be converted from the battery's 12-V dc supply, provides power to the in situ test circuits and CM data can be stored in the on-board data-logger for further offline analysis. The proposed method is experimentally validated on the developed test circuitry and also compared with finite-element thermoelectrical simulation. The test results from thermal cycling are also compared with acoustic microscope and thermal images. The developed circuitry is proved to be effective to detect solder fatigue while each IGBT in the converter can be examined sequentially during red-light stopping or services. The D&P circuitry can utilize existing on-board hardware and be embedded in the IGBT's gate drive unit.
Resumo:
Electric vehicles (EVs) offer great potential to move from fossil fuel dependency in transport once some of the technical barriers related to battery reliability and grid integration are resolved. The European Union has set a target to achieve a 10% reduction in greenhouse gas emissions by 2020 relative to 2005 levels. This target is binding in all the European Union member states. If electric vehicle issues are overcome then the challenge is to use as much renewable energy as possible to achieve this target. In this paper, the impacts of electric vehicle charged in the all-Ireland single wholesale electricity market after the 2020 deadline passes is investigated using a power system dispatch model. For the purpose of this work it is assumed that a 10% electric vehicle target in the Republic of Ireland is not achieved, but instead 8% is reached by 2025 considering the slow market uptake of electric vehicles. Our experimental study shows that the increasing penetration of EVs could contribute to approach the target of the EU and Ireland government on emissions reduction, regardless of different charging scenarios. Furthermore, among various charging scenarios, the off-peak charging is the best approach, contributing 2.07% to the target of 10% reduction of Greenhouse gas emissions by 2025.
Resumo:
Electric vehicles are a key prospect for future transportation. A large penetration of electric vehicles has the potential to reduce the global fossil fuel consumption and hence the greenhouse gas emissions and air pollution. However, the additional stochastic loads imposed by plug-in electric vehicles will possibly introduce significant changes to existing load profiles. In his paper, electric vehicles loads are integrated into an 5-unit system using a non-convex dynamic dispatch model. The actual infrastructure characteristics including valve-point effects, load balance constrains and transmission loss have been included in the model. Multiple load profiles are comparatively studied and compared in terms of economic and environmental impacts in order o identify patterns to charge properly. The study as expected shows ha off-peak charging is the best scenario with respect to using less fuels and producing less emissions.
Resumo:
Economic and environmental load dispatch aims to determine the amount of electricity generated from power plants to meet load demand while minimizing fossil fuel costs and air pollution emissions subject to operational and licensing requirements. These two scheduling problems are commonly formulated with non-smooth cost functions respectively considering various effects and constraints, such as the valve point effect, power balance and ramp rate limits. The expected increase in plug-in electric vehicles is likely to see a significant impact on the power system due to high charging power consumption and significant uncertainty in charging times. In this paper, multiple electric vehicle charging profiles are comparatively integrated into a 24-hour load demand in an economic and environment dispatch model. Self-learning teaching-learning based optimization (TLBO) is employed to solve the non-convex non-linear dispatch problems. Numerical results on well-known benchmark functions, as well as test systems with different scales of generation units show the significance of the new scheduling method.
Resumo:
Traditional internal combustion engine vehicles are a major contributor to global greenhouse gas emissions and other air pollutants, such as particulate matter and nitrogen oxides. If the tail pipe point emissions could be managed centrally without reducing the commercial and personal user functionalities, then one of the most attractive solutions for achieving a significant reduction of emissions in the transport sector would be the mass deployment of electric vehicles. Though electric vehicle sales are still hindered by battery performance, cost and a few other technological bottlenecks, focused commercialisation and support from government policies are encouraging large scale electric vehicle adoptions. The mass proliferation of plug-in electric vehicles is likely to bring a significant additional electric load onto the grid creating a highly complex operational problem for power system operators. Electric vehicle batteries also have the ability to act as energy storage points on the distribution system. This double charge and storage impact of many uncontrollable small kW loads, as consumers will want maximum flexibility, on a distribution system which was originally not designed for such operations has the potential to be detrimental to grid balancing. Intelligent scheduling methods if established correctly could smoothly integrate electric vehicles onto the grid. Intelligent scheduling methods will help to avoid cycling of large combustion plants, using expensive fossil fuel peaking plant, match renewable generation to electric vehicle charging and not overload the distribution system causing a reduction in power quality. In this paper, a state-of-the-art review of scheduling methods to integrate plug-in electric vehicles are reviewed, examined and categorised based on their computational techniques. Thus, in addition to various existing approaches covering analytical scheduling, conventional optimisation methods (e.g. linear, non-linear mixed integer programming and dynamic programming), and game theory, meta-heuristic algorithms including genetic algorithm and particle swarm optimisation, are all comprehensively surveyed, offering a systematic reference for grid scheduling considering intelligent electric vehicle integration.