951 resultados para Elastic Properties.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the possibility of associating fluorescence microscopy and hematoxylin-eosin staining for the identification of elastic fibers in elastin-rich tissues. Elastic fibers and elastic laminae were consistently identified by the proposed procedure, which revealed itself to be easy and useful for the determination of such structures and their distribution. The fluorescence properties of stained elastic fibers are due to eosin staining as revealed by fluorescence analysis of the dye in solution, with no or only minor contribution by the elastin autofluorescence. The main advantage of this technique resides in the possibility of studying the distribution of elastic fibers in file material without further sectioning and staining. The use of the confocal laser scanning microscope greatly improved the resolution and selectivity of imaging elastic fibers in different tissues. The determination of the three-dimensional distribution and structure of elastic fiber and laminae using the confocal laser scanning microscope was evaluated and also produced excellent results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we report a study of the physicochemical, dielectric and piezoelectric properties of anionic collagen and collagen-hydroxyapatite (HA) composites, considering the development of new biomaterials which have potential applications in support for cellular growth and in systems for bone regeneration. The piezoelectric strain tensor element d(14), the elastic constant s(55) and the dielectric permittivity 8(11), were measured for the anionic collagen and collagen-HA films. The thermal analysis shows that the denaturation endotherm is at 59.47 degreesC for the collagen sample. The collagen-HA composite film shows two transitions, at 48.9 and 80.65 degreesC. The X-ray diffraction pattern of the collagen film shows a broad band characteristic of an amorphous material. The main peaks associated to the crystalline HA is present in the sample of collagen-HA. In the collagen-HA composite, one can also notice the presence of other peaks with low intensities which is an indication of the formation of other crystalline phases of apatite. The scanning electron photomicrograph of anionic collagen membranes shows very thin bundles of collagen. The scanning electron photomicrography of collagen-HA film also show deposits of hydroxyapatite on the collagen fibers forming larger bundles and suggesting that a collagenous structure of reconstituted collagen fibers could act as nucleators for the formation of apatite crystal similar to those of bone. The piezoelectric strain tensor element d(14) was measured for the anionic collagen, with a value of 0.062 pC N-1, which is in good agreement compared with values reported in the literature obtained with other techniques. For the collagen-HA composite membranes, a slight decrease of the value of the piezoelectricity (0.041 pC N-1) was observed. The anionic collagen membranes present the highest density, dielectric permittivity and lowest frequency constant f.L. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical strength of polyethylene terephthalate (PET) fibres and polymethyl methacrylate (PMMA) matrix composites were studied with particular interest on the effects of oxygen and argon plasma treated fibres. PET. fibres were treated in a radio frequency plasma reactor using argon or oxygen for different treatment times to increase the interface adhesion. Fibre volume fraction was measured through digital image analysis. Elastic moduli resulted between 3 GPa for untreated to 6 GPa for treated composites. Tensile tests on PET fibres showed that plasma treatment caused a decrease in average tensile strength compared to untreated fibres. Fracture analysis confirmed the increase in interfacial adhesion due to plasma treatment. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports on the mechanical properties of germanium-rich amorphous carbon-germanium alloys prepared by RF sputtering of a germanium/graphite target under an argon/hydrogen atmosphere. Nano-hardness, elastic modulus and stress were investigated as a function of the carbon content. The stress, which is reduced by the incorporation of carbon, was related to the film structure and to the difference in the Ge-Ge and Ge-C bond length. Contrary to what was expected, the hardness and elastic modulus of the alloys are lower than the corresponding values for pure amorphous hydrogenated germanium film, which in turn has both properties also smaller than those of crystalline germanium. These properties are analyzed in terms of the structural properties of the films. (C) 2001 Elsevier B.V. B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The compaction rate, the relation between the density of the wood panel and the density of the wood used for producing the particles, is an indicator of the product's densification. Among the various types of wood panels, particleboards are widely employed in the lumber industry, mainly for the furniture production. This paper presents a study of the relation between the compaction rate and the properties of tensile strength perpendicular to surface, Modulus of Rupture (MOR) and Modulus of Elasticity (MOE) obtained from a static bending test, thickness swelling and water absorption (2 and 24 hours). These properties were calculated according to the Brazilian ABNT, NBR 14810 standard. Particleboards were produced using the species Pinus elliotti and adhesive ureaformaldehyde. The relation was established by a multiple linear regression, and the most appropriate statistical models were determined. The estimated models indicate statistically significant effects of water absorption in 2 hours and MOR in the particleboards' compaction rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The glued-laminated lumber (glulam) technique is an efficient process for making rational use of wood. Fiber-Reinforced Polymers (FRPs) associated with glulam beams provide significant gains in terms of strength and stiffness, and also alter the mode of rupture of these structural elements. In this context, this paper presents a theoretical model for designing reinforced glulam beams. The model allows for the calculation of the bending moment, the hypothetical distribution of linear strains along the height of the beam, and considers the wood has a linear elastic fragile behavior in tension parallel to the fibers and bilinear in compression parallel to the fibers, initially elastic and subsequently inelastic, with a negative decline in the stress-strain diagram. The stiffness was calculated by the transformed section method. Twelve non-reinforced and fiberglass reinforced glulam beams were evaluated experimentally to validate the proposed theoretical model. The results obtained indicate good congruence between the experimental and theoretical values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal), R(radial) and T(tangential) are coincident with the Cartesian axes (x, y, z), is more accepted as wood elastic model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic parameters, this paper deals with the fiber orientation influence in these models through adequate transformation of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, i.e., Young's modulus and shear modulus, with fiber orientation are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents an application of a Boundary Element Method (BEM) formulation for anisotropic body analysis using isotropic fundamental solution. The anisotropy is considered by expressing a residual elastic tensor as the difference of the anisotropic and isotropic elastic tensors. Internal variables and cell discretization of the domain are considered. Masonry is a composite material consisting of bricks (masonry units), mortar and the bond between them and it is necessary to take account of anisotropy in this type of structure. The paper presents the formulation, the elastic tensor of the anisotropic medium properties and the algebraic procedure. Two examples are shown to validate the formulation and good agreement was obtained when comparing analytical and numerical results. Two further examples in which masonry walls were simulated, are used to demonstrate that the presented formulation shows close agreement between BE numerical results and different Finite Element (FE) models. © 2012 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study is to develop a dynamic vibration absorber using viscoelastic material with nonlinear essential stiffness and time-dependent damping properties for a non-ideal vibrating system with Sommerfeld effect, resonance capture, and jump phenomenon. The absorber is a mass-bar subsystem that consists of a viscoelastic bar with memory attached to mass, in which the internal dissipative forces depend on current, deformations, and its operational frequency varies with limited temperature. The non-ideal vibrating system consists of a linear (nonlinear) oscillator (plane frame structure) under excitation, via spring connector, of a DC-motor with limited power supply. A viscoelastic dynamic absorber modeled with elastic stiffness essentially nonlinearities was developed to further reduce the Sommerfeld effect and the response of the structure. The numerical results show the performance of the absorber on the non-ideal system response through the resonance curves, time histories, and Poincarésections. Furthermore, the structure responses using the viscoelastic damper with and without memory were studied. © IMechE 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Descriptors and quantitative structure property relationships (QSPR) were investigated for mechanical property prediction of carbon nanotubes (CNTs). 78 molecular dynamics (MD) simulations were carried out, and 20 descriptors were calculated to build quantitative structure property relationships (QSPRs) for Young's modulus and Poisson's ratio in two separate analyses: vacancy only and vacancy plus methyl functionalization. In the first analysis, C N2/CT (number of non-sp2 hybridized carbons per the total carbons) and chiral angle were identified as critical descriptors for both Young's modulus and Poisson's ratio. Further analysis and literature findings indicate the effect of chiral angle is negligible at larger CNT radii for both properties. Raman spectroscopy can be used to measure CN2/C T, providing a direct link between experimental and computational results. Poisson's ratio approaches two different limiting values as CNT radii increases: 0.23-0.25 for chiral and armchair CNTs and 0.10 for zigzag CNTs (surface defects <3%). In the second analysis, the critical descriptors were CN2/CT, chiral angle, and MN/CT (number of methyl groups per total carbons). These results imply new types of defects can be represented as a new descriptor in QSPR models. Finally, results are qualified and quantified against experimental data. © 2013 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to investigate how environmental degradation affects the mechanical and thermal performance of polyetherimide/carbon fiber laminates, in this work different weathering were conducted. Additionally, dynamic mechanical analysis, interlaminar shear strength tests and non-destructive inspections were performed on this composite before and after being submitted to hygrothermal, UV radiation and thermal shock weathering. According to our results, hygrothermally aged samples had their glass transition temperature and elastic and storage moduli reduced by plasticization effect. Photooxidation, due to UV radiation exposure, occurred only on the surface of the laminates. Thermal shock induced a reversible stress on the composite's interface region. The results revealed that the mechanical behavior can vary during weather exposure but since this variation is only subtle, this thermoplastic laminate can be considered for high-performance applications, such as aerospace. © The Author(s) 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diverse amorphous hydrogenated carbon-based films (a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:Si:O) were obtained by radiofrequency plasma enhanced chemical vapor deposition (PECVD) and plasma immersion ion implantation and deposition (PIIID). The same precursors were used in the production of each pair of each type of film, such as a-C:H, using both PECVD and PIIID. Optical properties, namely the refractive index, n, absorption coefficient, α, and optical gap, ETauc, of these films were obtained via transmission spectra in the ultraviolet-visible near-infrared range (wavelengths from 300 to 3300 nm). Film hardness, elastic modulus and stiffness were obtained as a function of depth using nano-indentation. Surface energy values were calculated from liquid drop contact angle data. Film roughness and morphology were assessed using atomic force microscopy (AFM). The PIIID films were usually thinner and possessed higher refractive indices than the PECVD films. Determined refractive indices are consistent with literature values for similar types of films. Values of ETauc were increased in the PIIID films compared to the PECVD films. An exception was the a-C:H:Si:O films, for which that obtained by PIIID was thicker and exhibited a decreased ETauc. The mechanical properties - hardness, elastic modulus and stiffness - of films produced by PECVD and PIIID generally present small differences. An interesting effect is the increase in the hardness of a-C:H:Cl films from 1.0 to 3.0 GPa when ion implantation is employed. Surface energy correlates well with surface roughness. The implanted films are usually smoother than those obtained by PECVD. ©2013 Elsevier B.V. All rights reserved.