976 resultados para Elastic Properties


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, nano- and macro-scale characterisations on the mechanical properties of bovine cortical bones have been performed by using nanoindentation and conventional compressive tests. Nanoindentation results showed that the elastic modulus for the osteons and the interstitial lamellae in the longitude direction were 24.7 ± 2.5 GPa and 30.1 ± 2.4 GPa. As it’s difficult to distinguish osteons from interstitial lamellae in the transverse direction, the average elastic modulus for cortical bovine bone in the transverse direction was 19.8 ± 1.6 GPa. Significant differences were found in the modulus values between different microstructures of bone tissue and in different testing direction. It was found that the elastic modulus of bone bovine material in nano-level was higher than that in macro-level. The elastic modulus and
ultimate stress of large bone samples were 12.5 ± 1.9 GPa and 195 ± 19 MPa respectively from the compression test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical properties of aluminium foams can be improved by matrix reinforcement and resin-impregnation methods. In the present study, aluminium foams were reinforced by both ceramic particulate reinforcing of the aluminium matrix and resin-impregnating pores. The mechanical properties and the energy absorption of the reinforced aluminium foams were investigated by dynamic and quasi-static compression. Results indicated that the ceramic particle additions of CBN, SiC and B4C in aluminium foams increase the peak stress, elastic modulus and energy absorption of the aluminium foams, under both conditions of dynamic and quasi-static compression. Moreover, the aluminium foams with and without ceramic particle additions exhibited obvious strain rate sensitivity during dynamic compression. Furthermore, the resin-impregnation improves the mechanic properties and energy absorption of aluminium foams significantly. However, aluminium foams with resin-impregnation showed negligible strain rate sensitivity under dynamic compression. It is reported that both the ceramic particle addition and resin-impregnation can be effective techniques to improve the mechanical and the energy absorption properties of aluminium foams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A porous Ti–18 at.%Nb–4 at.%Sn (hereafter, Ti–18Nb–4Sn) alloy was prepared by powder metallurgy. The porous structures were examined by scanning electron microscopy and the phase constituents were analysed by X-ray diffraction. Mechanical properties of the porous alloy were investigated using a compressive test. To enhance the bioactivity of the alloy surface, alkali-heat treatment was used to modify the surface. The bioactivity of the pre-treated alloy sample was investigated using a biomimetic process by soaking the sample into simulated body fluid (SBF). Results indicate that the elastic modulus and plateau stress of the porous Ti–18Nb–4Sn alloy decrease with decreasing relative density. The mechanical properties of the porous alloy can be tailored to match those of human bone. After soaking in SBF for 7 days, a hydroxyapatite layer formed on the surface of the pre-treated porous Ti–18Nb–4Sn alloy. The pre-treated porous Ti–18Nb–4Sn alloy therefore has the potential to be a bioactive implant material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small diameter vascular grafts were fabricated from pure Polyurethane (PU) as well as PU reinforced with a tubular weft-knitted fabric. The tensile properties of the reinforced composite vascular grafts were compared with that of the tubular fabric itself and the pure PU vascular grafts. The elasticity and strength of the reinforced vascular grafts were improved compared with the tubular fabric. Strength of the reinforced vascular grafts was 5–10 times of the strength of the pure PU vascular grafts. Expanding the tubular fabric to increase the inner diameter of the reinforced vascular graft reduced the graft’s strength and initial modulus, but the difference was reduced as the PU content was increased. For grafts of the same inner diameter, increasing the PU content increased the thickness and strength of the graft wall, which led to a general increase in the strength and initial modulus of the composite vascular grafts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical properties of urethane crosslinked poly(ethylene oxide-co-propylene oxide) glyceryl ether-plasticiser (tetraethylene glycol dimethyl ether, or methylformamide)-salt (LiClO4)-based polymer electrolytes have been studied. It was found that, with increasing concentration of salt, the elastic modulus and tensile strength of the materials unexpectedly decrease. This is interpreted in terms of a predominance of intramolecular coordination of the Li+ ions by the polymer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of emulsification on the styrene-butadiene-styrene (SBS) chemically modified bitumens (CMBs) is studied by conventional tests, differential scanning calorimetry (DSC) and fourier transform infrared (FTIR) spectroscopy. Compared to CMBs, modified bitumen emulsion residues (MBERs) exhibit higher temperature susceptibility, inferior resistant to cracking and deformation, lower elastic recovery and storage stability whereas these properties are improved substantially relative to base bitumens. DSC results show that the thermostability of CMBs decreased slightly after emulsification which indicate the emulsification exerts very little effect on the thermal property of CMBs. The FTIR results do not indicate any chemical reaction exists on CMBs during the emulsification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this replicated experiment, we investigated the comfort properties of single jersey fabrics composed of cashmere in blends with superfine wools of different fibre curvature (crimp) where the fibre diameter of the wool and cashmere were tightly controlled. The 81 fabrics were evaluated using the Wool ComfortMeter (WCM) which has been calibrated using wearer trials of wool knitwear. General linear modelling determined the best prediction models for log10 transformed fabric WCM values using 27 fibre, 16 yarn and 30 fabric attributes. Tighter fabrics were less comfortable. Progressively blending cashmere with wool progressively increased comfort assessment. The WCM was able to detect differences between fabrics which were more supple and springy, thinner and lighter, and were composed of more elastic, uniform and stronger yarns. Together these attributes explained 82% of the variance in WCM value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An open-cell titanium foam with relative density of 0.2 was prepared by powder metallurgical process. The compressive mechanical properties of the foam at the different temperatures in the range of 20-600°C were measured and the temperature-dependence of its mechanical properties was discussed. The results indicate that the foam material exhibit fragile fracture characteristic at room temperature. When it is deformed over 200°C, the stress-strain curves exhibit plastic deformation characteristic, including three distinct regions: the linear elasticity region, the plastic collapse region, and the densification region. The Young's modulus, yield stress and elastic limit decrease with increasing of temperature. The temperature-dependence of these properties can be expressed as E*=1.5217 × 10 9-5.988 × 10 5T, σ cl*=85.7-0.095T, σ ys*=99.1-0.167V7.02 × 10 -5T 2 respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silk fibres from different components of the Antheraea pernyi silkworm cocoon, namely peduncle, outer floss, and cocoon shells (outermost layer and pelade layer) were studied in detail to gain insights into the structure-property-function relationship. Among the fibres from different components, peduncle fibres are the softest with the largest viscoelastic lag, which may reduce the oscillation amplitude when a cocoon hangs on a twig. Fibres from the outermost layer are the toughest and have the largest breaking energy. Outer floss fibres have the highest content of sericin (about 11.98%) but their hardness and elasticity are intermediate. Pelade fibres are shape - preservable and stable with superior hardness and elasticity. The understanding of the properties of different silk fibres is essential for understanding their respective roles in the function of a silk cocoon and will also inspire new designs of protective materials under stringent environmental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrically conductive elastic nanocomposites with well-organized graphene architectures offer significant improvement in various properties. However, achieving desirable graphene architectures in cross-linked rubber is challenging due to high viscosity and cross-linked nature of rubber matrices. Here, three dimensional (3D) interconnected graphene networks in natural rubber (NR) matrix are framed with self-assembly integrating latex compounding technology by employing electrostatic adsorption between poly(diallyldimethylammonium chloride) modified graphene (positively charged) and NR latex particles (negatively charged) as the driving force. The 3D graphene structure endows the resulted nanocomposites with excellent electrical conductivity of 7.31. S/m with a graphene content of 4.16. vol.%, extremely low percolation threshold of 0.21. vol.% and also analogous reinforcement in mechanical properties. The developed strategy will provide a practical approach for developing elastic nanocomposites with multi-functional properties. © 2014 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper systematically examines the thermomechanical properties and phase transformation behaviour of slightly Ni-rich Ni-Ti biomedical shape memory wires containing homogeneously distributed nanoscale precipitates induced by stress-assisted ageing. In contrast to previous studies, particular attention is paid to the role of precipitates in impeding twin boundary movement (TBM) and its underlying mechanisms. The size and volume fraction of precipitates are altered by changing the ageing time. The martensitic transformation temperatures increase with prolonged ageing time, whereas the R-phase transformation temperature remains relatively unchanged. The stress-strain behaviour in different phase regions during both cooling and heating is comprehensively examined, and the underlying mechanisms for the temperature- and thermal-history-dependent behaviour are elucidated with the help of the established stress-temperature phase diagram. The effect of precipitates on TBM is explored by mechanical testing at 133K. It is revealed that the critical stress for TBM (σcr) increases with increasing ageing time. There is a considerable increase of 104MPa in σcr in the sample aged at 773K for 120min under 70MPa compared with the solution-treated sample, owing to the presence of precipitates. The Orowan strengthening model of twinning dislocations is insufficient to account for this increase in σcr. The back stress generation is the predominant mechanism for the interactions between precipitates and twin boundaries during TBM that give rise to the increase in σcr. Such results provide new insights into the thermomechanical properties of precipitate containing Ni-Ti biomedical shape memory wires, which are instructive for developing high-performance biomedical shape memory alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we report the effect of multi-walled carbon nanotubes (MWCNTs) and thermally reduced graphene (TRG) on the miscibility, morphology and final properties of nanostructured epoxy resin with an amphiphilic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer. The addition of nanoparticles did not have any influence on the miscibility of PEO-PPO-PEO copolymer in the resin. However, MWCNTs and TRG reduced the degree of crystallinity of the PEO-rich microphases in the blends above 10 wt.% of copolymer while they did not change the phase morphology at the nanoscale, where PPO spherical domains of 20-30 nm were found in all the samples studied. A synergic effect between the self-assembled nanostructure and the nanoparticles on the toughness of the cured resin was observed. In addition, the nanoparticles minimized the negative effect of the copolymer on the elastic modulus and glass transition temperature in the resin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical properties of metals with bcc structure, such as niobium and its alloys, have changed significantly with the introduction of heavy interstitial elements. These interstitial elements (nitrogen, for example), present in the alloy, occupy octahedral sites and constitute an elastic dipole of tetragonal symmetry and might produce anelastic relaxation. This article presents the effect of nitrogen on the anelastic properties of Nb-1.0 wt% Zr alloys, measured by means of mechanical spectroscopy using a torsion pendulum. The results showed complex anelastic relaxation structures, which were resolved into their constituent peaks, representing each relaxation process. These processes are due to stress-induced ordering of the interstitial elements around the niobium and zirconium of the alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)