935 resultados para ElGamal, CZK, Multiple discrete logarithm assumption, Extended linear algebra
Resumo:
En aquesta tesi es solucionen problemes de visibilitat i proximitat sobre superfícies triangulades considerant elements generalitzats. Com a elements generalitzats considerem: punts, segments, poligonals i polígons. Les estrategies que proposem utilitzen algoritmes de geometria computacional i hardware gràfic. Comencem tractant els problemes de visibilitat sobre models de terrenys triangulats considerant un conjunt d'elements de visió generalitzats. Es presenten dos mètodes per obtenir, de forma aproximada, mapes de multi-visibilitat. Un mapa de multi-visibilitat és la subdivisió del domini del terreny que codifica la visibilitat d'acord amb diferents criteris. El primer mètode, de difícil implementació, utilitza informació de visibilitat exacte per reconstruir de forma aproximada el mapa de multi-visibilitat. El segon, que va acompanyat de resultats d'implementació, obté informació de visibilitat aproximada per calcular i visualitzar mapes de multi-visibilitat discrets mitjançant hardware gràfic. Com a aplicacions es resolen problemes de multi-visibilitat entre regions i es responen preguntes sobre la multi-visibilitat d'un punt o d'una regió. A continuació tractem els problemes de proximitat sobre superfícies polièdriques triangulades considerant seus generalitzades. Es presenten dos mètodes, amb resultats d'implementació, per calcular distàncies des de seus generalitzades sobre superfícies polièdriques on hi poden haver obstacles generalitzats. El primer mètode calcula, de forma exacte, les distàncies definides pels camins més curts des de les seus als punts del poliedre. El segon mètode calcula, de forma aproximada, distàncies considerant els camins més curts sobre superfícies polièdriques amb pesos. Com a aplicacions, es calculen diagrames de Voronoi d'ordre k, i es resolen, de forma aproximada, alguns problemes de localització de serveis. També es proporciona un estudi teòric sobre la complexitat dels diagrames de Voronoi d'ordre k d'un conjunt de seus generalitzades en un poliedre sense pesos.
Resumo:
In the past decade, the amount of data in biological field has become larger and larger; Bio-techniques for analysis of biological data have been developed and new tools have been introduced. Several computational methods are based on unsupervised neural network algorithms that are widely used for multiple purposes including clustering and visualization, i.e. the Self Organizing Maps (SOM). Unfortunately, even though this method is unsupervised, the performances in terms of quality of result and learning speed are strongly dependent from the neuron weights initialization. In this paper we present a new initialization technique based on a totally connected undirected graph, that report relations among some intersting features of data input. Result of experimental tests, where the proposed algorithm is compared to the original initialization techniques, shows that our technique assures faster learning and better performance in terms of quantization error.
Resumo:
The tridentate Schiff base ligand, 7-amino-4-methyl-5-aza-3-hepten-2-one (HAMAH), prepared by the mono-condensation of 1,2diaminoethane and acetylacetone, reacts with Cu(BF4)(2) center dot 6H(2)O to produce initially a dinuclear Cu(II) complex, [{Cu(AMAH)}(2) (mu-4,4'-bipyJ](BF4)(2) (1) which undergoes hydrolysis in the reaction mixture and finally produces a linear polymeric chain compound, [Cu(acac)(2)(mu-4,4'-bipy)](n) (2). The geometry around the copper atom in compound 1 is distorted square planar while that in compound 2 is essentially an elongated octahedron. On the other hand, the ligand HAMAH reacts with Cu(ClO4)(2) center dot 6H(2)O to yield a polymeric zigzag chain, [{Cu(acac)(CH3OH)(mu-4,4'-bipy)}(ClO4)](n) (3). The geometry of the copper atom in 3 is square pyramidal with the two bipyridine molecules in the cis equatorial positions. All three complexes have been characterized by elemental analysis, IR and UV-Vis spectroscopy and single crystal X-ray diffraction studies. A probable explanation for the different size and shape of the reported polynuclear complexes formed by copper(II) and 4,4'-bipyridine has been put forward by taking into account the denticity and crystal field strength of the blocking ligand as well as the Jahn-Teller effect in copper(II). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Extended-chain complexes containing multiple transition metal centres linked by conjugated mu-cyanodiazenido(1-) ligands [N= N-C N]-have been obtained by reaction of trans-[BrW(dppe)(2)(N2CN)], 1, [dppe = 1,2-bis(diphenylphosphino) ethane] with dirhodium(II) tetra-acetate, bis(benzonitrile) palladium(II) dichloride, and bis(aqua) M(II) bis(hexa. uoroacetylacetonate) (M = Mn, Ni, Cu, Zn): stronger Lewis acids such as tetrakis(acetonitrile) palladium(II) tetra. uoroborate and boron trifl. uoride promote hydrolysis of complex 1, leading to the isolation of a novel carbamoylhydrazido(2-) complex, trans-[BrW(dppe) 2(N2HC=ONH2)](+)[BF4](-).
Resumo:
The compounds Ag(CN)(NH3) and Ag(Br)(NH3) are remarkable in that they form solids containing the simple molecular units NC-Ag-NH3 and Br-Ag-NH3, rather than extended solids, and are the first examples of simple linear asymmetric complexes of silver(I).
Resumo:
In this paper new robust nonlinear model construction algorithms for a large class of linear-in-the-parameters models are introduced to enhance model robustness, including three algorithms using combined A- or D-optimality or PRESS statistic (Predicted REsidual Sum of Squares) with regularised orthogonal least squares algorithm respectively. A common characteristic of these algorithms is that the inherent computation efficiency associated with the orthogonalisation scheme in orthogonal least squares or regularised orthogonal least squares has been extended such that the new algorithms are computationally efficient. A numerical example is included to demonstrate effectiveness of the algorithms. Copyright (C) 2003 IFAC.
Resumo:
The popularity of wireless local area networks (WLANs) has resulted in their dense deployments around the world. While this increases capacity and coverage, the problem of increased interference can severely degrade the performance of WLANs. However, the impact of interference on throughput in dense WLANs with multiple access points (APs) has had very limited prior research. This is believed to be due to 1) the inaccurate assumption that throughput is always a monotonically decreasing function of interference and 2) the prohibitively high complexity of an accurate analytical model. In this work, firstly we provide a useful classification of commonly found interference scenarios. Secondly, we investigate the impact of interference on throughput for each class based on an approach that determines the possibility of parallel transmissions. Extensive packet-level simulations using OPNET have been performed to support the observations made. Interestingly, results have shown that in some topologies, increased interference can lead to higher throughput and vice versa.
Resumo:
This work compares and contrasts results of classifying time-domain ECG signals with pathological conditions taken from the MITBIH arrhythmia database. Linear discriminant analysis and a multi-layer perceptron were used as classifiers. The neural network was trained by two different methods, namely back-propagation and a genetic algorithm. Converting the time-domain signal into the wavelet domain reduced the dimensionality of the problem at least 10-fold. This was achieved using wavelets from the db6 family as well as using adaptive wavelets generated using two different strategies. The wavelet transforms used in this study were limited to two decomposition levels. A neural network with evolved weights proved to be the best classifier with a maximum of 99.6% accuracy when optimised wavelet-transform ECG data wits presented to its input and 95.9% accuracy when the signals presented to its input were decomposed using db6 wavelets. The linear discriminant analysis achieved a maximum classification accuracy of 95.7% when presented with optimised and 95.5% with db6 wavelet coefficients. It is shown that the much simpler signal representation of a few wavelet coefficients obtained through an optimised discrete wavelet transform facilitates the classification of non-stationary time-variant signals task considerably. In addition, the results indicate that wavelet optimisation may improve the classification ability of a neural network. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We describe and implement a fully discrete spectral method for the numerical solution of a class of non-linear, dispersive systems of Boussinesq type, modelling two-way propagation of long water waves of small amplitude in a channel. For three particular systems, we investigate properties of the numerically computed solutions; in particular we study the generation and interaction of approximate solitary waves.
Resumo:
We study boundary value problems for a linear evolution equation with spatial derivatives of arbitrary order, on the domain 0 < x < L, 0 < t < T, with L and T positive nite constants. We present a general method for identifying well-posed problems, as well as for constructing an explicit representation of the solution of such problems. This representation has explicit x and t dependence, and it consists of an integral in the k-complex plane and of a discrete sum. As illustrative examples we solve some two-point boundary value problems for the equations iqt + qxx = 0 and qt + qxxx = 0.
Resumo:
Multiple linear regression is used to diagnose the signal of the 11-yr solar cycle in zonal-mean zonal wind and temperature in the 40-yr ECMWF Re-Analysis (ERA-40) dataset. The results of previous studies are extended to 2008 using data from ECMWF operational analyses. This analysis confirms that the solar signal found in previous studies is distinct from that of volcanic aerosol forcing resulting from the eruptions of El Chichón and Mount Pinatubo, but it highlights the potential for confusion of the solar signal and lower-stratospheric temperature trends. A correction to an error that is present in previous results of Crooks and Gray, stemming from the use of a single daily analysis field rather than monthly averaged data, is also presented.
Resumo:
A neural network enhanced self-tuning controller is presented, which combines the attributes of neural network mapping with a generalised minimum variance self-tuning control (STC) strategy. In this way the controller can deal with nonlinear plants, which exhibit features such as uncertainties, nonminimum phase behaviour, coupling effects and may have unmodelled dynamics, and whose nonlinearities are assumed to be globally bounded. The unknown nonlinear plants to be controlled are approximated by an equivalent model composed of a simple linear submodel plus a nonlinear submodel. A generalised recursive least squares algorithm is used to identify the linear submodel and a layered neural network is used to detect the unknown nonlinear submodel in which the weights are updated based on the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model therefore the nonlinear submodel is naturally accommodated within the control law. Two simulation studies are provided to demonstrate the effectiveness of the control algorithm.
Resumo:
The relationship between minimum variance and minimum expected quadratic loss feedback controllers for linear univariate discrete-time stochastic systems is reviewed by taking the approach used by Caines. It is shown how the two methods can be regarded as providing identical control actions as long as a noise-free measurement state-space model is employed.
Resumo:
This paper considers the use of radial basis function and multi-layer perceptron networks for linear or linearizable, adaptive feedback control schemes in a discrete-time environment. A close look is taken at the model structure selected and the extent of the resulting parameterization. A comparison is made with standard, nonneural network algorithms, e.g. self-tuning control.
Resumo:
This paper presents several new families of cumulant-based linear equations with respect to the inverse filter coefficients for deconvolution (equalisation) and identification of nonminimum phase systems. Based on noncausal autoregressive (AR) modeling of the output signals and three theorems, these equations are derived for the cases of 2nd-, 3rd and 4th-order cumulants, respectively, and can be expressed as identical or similar forms. The algorithms constructed from these equations are simpler in form, but can offer more accurate results than the existing methods. Since the inverse filter coefficients are simply the solution of a set of linear equations, their uniqueness can normally be guaranteed. Simulations are presented for the cases of skewed series, unskewed continuous series and unskewed discrete series. The results of these simulations confirm the feasibility and efficiency of the algorithms.