958 resultados para EXTRACELLULAR-MATRIX PROTEINS
Resumo:
We report the case of a congenital myasthenic syndrome due to a mutation in AGRN, the gene encoding agrin, an extracellular matrix molecule released by the nerve and critical for formation of the neuromuscular junction. Gene analysis identified a homozygous missense mutation, c.5125G>C, leading to the p.Gly1709Arg variant. The muscle-biopsy specimen showed a major disorganization of the neuromuscular junction, including changes in the nerve-terminal cytoskeleton and fragmentation of the synaptic gutters. Experiments performed in nonmuscle cells or in cultured C2C12 myotubes and using recombinant mini-agrin for the mutated and the wild-type forms showed that the mutated form did not impair the activation of MuSK or change the total number of induced acetylcholine receptor aggregates. A solid-phase assay using the dystrophin glycoprotein complex showed that the mutation did not affect the binding of agrin to alpha-dystroglycan. Injection of wild-type or mutated agrin into rat soleus muscle induced the formation of nonsynaptic acetylcholine receptor clusters, but the mutant protein specifically destabilized the endogenous neuromuscular junctions. Importantly, the changes observed in rat muscle injected with mutant agrin recapitulated the pre- and post-synaptic modifications observed in the patient. These results indicate that the mutation does not interfere with the ability of agrin to induce postsynaptic structures but that it dramatically perturbs the maintenance of the neuromuscular junction.
Resumo:
In Duchenne muscular dystrophy (DMD), a persistently altered and reorganizing extracellular matrix (ECM) within inflamed muscle promotes damage and dysfunction. However, the molecular determinants of the ECM that mediate inflammatory changes and faulty tissue reorganization remain poorly defined. Here, we show that fibrin deposition is a conspicuous consequence of muscle-vascular damage in dystrophic muscles of DMD patients and mdx mice and that elimination of fibrin(ogen) attenuated dystrophy progression in mdx mice. These benefits appear to be tied to: (i) a decrease in leukocyte integrin α(M)β(2)-mediated proinflammatory programs, thereby attenuating counterproductive inflammation and muscle degeneration; and (ii) a release of satellite cells from persistent inhibitory signals, thereby promoting regeneration. Remarkably, Fib-gamma(390-396A) (Fibγ(390-396A)) mice expressing a mutant form of fibrinogen with normal clotting function, but lacking the α(M)β(2) binding motif, ameliorated dystrophic pathology. Delivery of a fibrinogen/α(M)β(2) blocking peptide was similarly beneficial. Conversely, intramuscular fibrinogen delivery sufficed to induce inflammation and degeneration in fibrinogen-null mice. Thus, local fibrin(ogen) deposition drives dystrophic muscle inflammation and dysfunction, and disruption of fibrin(ogen)-α(M)β(2) interactions may provide a novel strategy for DMD treatment.
Resumo:
BACKGROUND: Alpha-dystroglycan (alpha-DG) is a cell surface receptor providing a molecular link between the extracellular matrix (ECM) and the actin-based cytoskeleton. During its biosynthesis, alpha-DG undergoes specific and unusual O-glycosylation crucial for its function as a high-affinity cellular receptor for ECM proteins. METHODOLOGY/PRINCIPAL FINDINGS: We report that expression of functionally glycosylated alpha-DG during thymic development is tightly regulated in developing T cells and largely confined to CD4(-)CD8(-) double negative (DN) thymocytes. Ablation of DG in T cells had no effect on proliferation, migration or effector function but did reduce the size of the thymus due to a significant loss in absolute numbers of thymocytes. While numbers of DN thymocytes appeared normal, a marked reduction in CD4(+)CD8(+) double positive (DP) thymocytes occurred. In the periphery mature naïve T cells deficient in DG showed both normal proliferation in response to allogeneic cells and normal migration, effector and memory T cell function when tested in acute infection of mice with either lymphocytic choriomeningitis virus (LCMV) or influenza virus. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that DG function is modulated by glycosylation during T cell development in vivo and that DG is essential for normal development and differentiation of T cells.
Resumo:
ABSTRACT: BACKGROUND: After liver injury, the repair process comprises activation and proliferation of hepatic stellate cells (HSCs), which produce extracellular matrix (ECM) proteins. Peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is highly expressed in these cells, but its function in liver repair remains incompletely understood. This study investigated whether activation of PPARβ/δ with the ligand GW501516 influenced the fibrotic response to injury from chronic carbon tetrachloride (CCl4) treatment in mice. Wild type and PPARβ/δ-null mice were treated with CCl4 alone or CCl4 co-administered with GW501516. To unveil mechanisms underlying the PPARβ/δ-dependent effects, we analyzed the proliferative response of human LX-2 HSCs to GW501516 in the presence or absence of PPARβ/δ. RESULTS: We found that GW501516 treatment enhanced the fibrotic response. Compared to the other experimental groups, CCl4/GW501516-treated wild type mice exhibited increased expression of various profibrotic and pro-inflammatory genes, such as those involved in extracellular matrix deposition and macrophage recruitment. Importantly, compared to healthy liver, hepatic fibrotic tissues from alcoholic patients showed increased expression of several PPAR target genes, including phosphoinositide-dependent kinase-1, transforming growth factor beta-1, and monocyte chemoattractant protein-1. GW501516 stimulated HSC proliferation that caused enhanced fibrotic and inflammatory responses, by increasing the phosphorylation of p38 and c-Jun N-terminal kinases through the phosphoinositide-3 kinase/protein kinase-C alpha/beta mixed lineage kinase-3 pathway. CONCLUSIONS: This study clarified the mechanism underlying GW501516-dependent promotion of hepatic repair by stimulating proliferation of HSCs via the p38 and JNK MAPK pathways.
Resumo:
The precise localization of extracellular matrix and cell wall components is of critical importance for multicellular organisms. Lignin is a major cell wall modification that often forms intricate subcellular patterns that are central to cellular function. Yet the mechanisms of lignin polymerization and the subcellular precision of its formation remain enigmatic. Here, we show that the Casparian strip, a lignin-based, paracellular diffusion barrier in plants, forms as a precise, median ring by the concerted action of a specific, localized NADPH oxidase, brought into proximity of localized peroxidases through the action of Casparian strip domain proteins (CASPs). Our findings in Arabidopsis provide a simple mechanistic model of how plant cells regulate lignin formation with subcellular precision. We speculate that scaffolding of NADPH oxidases to the downstream targets of the reactive oxygen species (ROS) that they produce might be a widespread mechanism to ensure specificity and subcellular precision of ROS action within the extracellular matrix.
Resumo:
Ten years ago, the first cellular receptor for the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the highly pathogenic Lassa virus (LASV) was identified as alpha-dystroglycan (alpha-DG), a versatile receptor for proteins of the extracellular matrix (ECM). Biochemical analysis of the interaction of alpha-DG with arenaviruses and ECM proteins revealed a strikingly similar mechanism of receptor recognition that critically depends on specific sugar modification on alpha-DG involving a novel class of putative glycosyltransferase, the LARGE proteins. Interestingly, recent genome-wide detection and characterization of positive selection in human populations revealed evidence for positive selection of a locus within the LARGE gene in populations from Western Africa, where LASV is endemic. While most enveloped viruses that enter the host cell in a pH-dependent manner use clathrin-mediated endocytosis, recent studies revealed that the Old World arenaviruses LCMV and LASV enter the host cell predominantly via a novel and unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the virus is rapidly delivered to endosomes via an unusual route of vesicular trafficking that is largely independent of the small GTPases Rab5 and Rab7. Since infection of cells with LCMV and LASV depends on DG, this unusual endocytotic pathway could be related to normal cellular trafficking of the DG complex. Alternatively, engagement of arenavirus particles may target DG for an endocytotic pathway not normally used in uninfected cells thereby inducing an entry route specifically tailored to the pathogen's needs.
Resumo:
Although streptococcal and S. aureus IE share the same primary site of infection, their pathogenesis and clinical evolution present several major differences. Streptococci adhere to cardiac valves with pre-existing endothelial lesions. In contrast, S. aureus can colonize either damaged endothelium or invade physically intact endothelial cells. These interactions are mediated by multiple surface adhesins, some of which have been only partially characterized. Streptococci produce surface glucans (gtf and ftf), ECM adhesins (e.g., fibronectin-binding proteins, FimA), and platelet aggregating factors (phase I and phase II antigens, pblA, pblB, and pblT), all of which have been.
Resumo:
One of the major hurdles of isolating stable, inducible or constitutive high-level producer cell lines is the time-consuming selection procedure. Given the variation in the expression levels of the same construct in individual clones, hundreds of clones must be isolated and tested to identify one or more with the desired characteristics. Various boundary elements (BEs), matrix attachment regions, and locus control regions (LCRs) were screened for their ability to augment the expression of heterologous genes in Chinese hamster ovary (CHO) cells. Of the chromatin elements assayed, the chicken lysozyme matrix-attachment region (MAR) was the only element to significantly increase stable reporter expression. We found that the use of the MAR increases the proportion of high-producing clones, thus reducing the number of clones that need to be screened. These benefits are observed both for constructs with MARs flanking the transgene expression cassette, as well as when constructs are co-transfected with the MAR on a separate plasmid. Moreover, the MAR was co-transfected with a multicomponent regulatable beta-galactosidase expression system in C2C12 cells and several clones exhibiting regulated expression were identified. Hence, MARs are useful in the development of stable cell lines for production or regulated expression.
Resumo:
The endodermis is a root cell layer common to higher plants and of fundamental importance for root function and nutrient uptake. The endodermis separates outer (peripheral) from inner (central) cell layers by virtue of its Casparian strips, precisely aligned bands of specialized wall material. Here we reveal that the membrane at the Casparian strip is a diffusional barrier between the central and peripheral regions of the plasma membrane and that it mediates attachment to the extracellular matrix. This membrane region thus functions like a tight junction in animal epithelia, although plants lack the molecular modules that establish tight junction in animals. We have also identified a pair of influx and efflux transporters that mark both central and peripheral domains of the plasma membrane. These transporters show opposite polar distributions already in meristems, but their localization becomes refined and restricted upon differentiation. This "central-peripheral" polarity coexists with the apical-basal polarity defined by PIN proteins within the same cells, but utilizes different polarity determinants. Central-peripheral polarity can be already observed in early embryogenesis, where it reveals a cellular polarity within the quiescent center precursor cell. A strict diffusion block between polar domains is common in animals, but had never been described in plants. Yet, its relevance to endodermal function is evident, as central and peripheral membranes of the endodermis face fundamentally different root compartments. Further analysis of endodermal transporter polarity and manipulation of its barrier function will greatly promote our understanding of plant nutrition and stress tolerance in roots.
Resumo:
For tissue engineering, several cell types and tissues have been proposed as starting material. Allogenic skin products available for therapeutic usage are mostly developed with cell culture and with foreskin tissue of young individuals. Fetal skin cells offer a valuable solution for effective and safe tissue engineering for wounds due to their rapid growth and simple cell culture. By selecting families of genes that have been reported to be implicated in wound repair and particularly for scarless fetal wound healing including transforming growth factor-beta (TGF-beta) superfamily, extracellular matrix, and nerve/angiogenesis growth factors, we have analyzed differences in their expression between fetal skin and foreskin cells, and the same passages. Of the five TGF-beta superfamily genes analyzed by real-time reverse transcription-polymerase chain reaction, three were found to be significantly different with sixfold up-regulated for TGF-beta2, and 3.8-fold for BMP-6 in fetal cells, whereas GDF-10 was 11.8-fold down-regulated. For nerve growth factors, midkine was 36-fold down-regulated in fetal cells, and pleiotrophin was 4.76-fold up-regulated. We propose that fetal cells present technical and therapeutic advantages compared to foreskin cells for effective cell-based therapy for wound management, and overall differences in gene expression could contribute to the degree of efficiency seen in clinical use with these cells.
Resumo:
Here, we identify a role for the matrilin-2 (Matn2) extracellular matrix protein in controlling the early stages of myogenic differentiation. We observed Matn2 deposition around proliferating, differentiating and fusing myoblasts in culture and during muscle regeneration in vivo. Silencing of Matn2 delayed the expression of the Cdk inhibitor p21 and of the myogenic genes Nfix, MyoD and Myog, explaining the retarded cell cycle exit and myoblast differentiation. Rescue of Matn2 expression restored differentiation and the expression of p21 and of the myogenic genes. TGF-β1 inhibited myogenic differentiation at least in part by repressing Matn2 expression, which inhibited the onset of a positive-feedback loop whereby Matn2 and Nfix activate the expression of one another and activate myoblast differentiation. In vivo, myoblast cell cycle arrest and muscle regeneration was delayed in Matn2(-/-) relative to wild-type mice. The expression levels of Trf3 and myogenic genes were robustly reduced in Matn2(-/-) fetal limbs and in differentiating primary myoblast cultures, establishing Matn2 as a key modulator of the regulatory cascade that initiates terminal myogenic differentiation. Our data thus identify Matn2 as a crucial component of a genetic switch that modulates the onset of tissue repair.
Resumo:
Transforming growth factor beta (TGF-beta) is a pluripotent peptide hormone that regulates various cellular activities, including growth, differentiation, and extracellular matrix protein gene expression. We previously showed that TGF-beta induces the transcriptional activation domain (TAD) of CTF-1, the prototypic member of the CTF/NF-I family of transcription factors. This induction correlates with the proposed role of CTF/NF-I binding sites in collagen gene induction by TGF-beta. However, the mechanisms of TGF-beta signal transduction remain poorly understood. Here, we analyzed the role of free calcium signaling in the induction of CTF-1 transcriptional activity by TGF-beta. We found that TGF-beta stimulates calcium influx and mediates an increase of the cytoplasmic calcium concentration in NIH3T3 cells. TGF-beta induction of CTF-1 is inhibited in cells pretreated with thapsigargin, which depletes the endoplasmic reticulum calcium stores, thus further arguing for the potential relevance of calcium mobilization in TGF-beta action. Consistent with this possibility, expression of a constitutively active form of the calcium/calmodulin-dependent phosphatase calcineurin or of the calcium/calmodulin-dependent kinase IV (DeltaCaMKIV) specifically induces the CTF-1 TAD and the endogenous mouse CTF/NF-I proteins. Both calcineurin- and DeltaCaMKIV-mediated induction require the previously identified TGF-beta-responsive domain of CTF-1. The immunosuppressants cyclosporin A and FK506 abolish calcineurin-mediated induction of CTF-1 activity. However, TGF-beta still induces the CTF-1 TAD in cells treated with these compounds or in cells overexpressing both calcineurin and DeltaCaMKIV, suggesting that other calcium-sensitive enzymes might mediate TGF-beta action. These results identify CTF/NF-I as a novel calcium signaling pathway-responsive transcription factor and further suggest multiple molecular mechanisms for the induction of CTF/NF-I transcriptional activity by growth factors.
Resumo:
Proteoglycans (PGs) are a major component of the extracellular matrix in many tissues and function as structural and regulatory molecules. PGs are composed of core proteins and glycosaminoglycan (GAG) side chains. The biosynthesis of GAGs starts with the linker region that consists of four sugar residues and is followed by repeating disaccharide units. By exome sequencing, we found that B3GALT6 encoding an enzyme involved in the biosynthesis of the GAG linker region is responsible for a severe skeletal dysplasia, spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMD-JL1). B3GALT6 loss-of-function mutations were found in individuals with SEMD-JL1 from seven families. In a subsequent candidate gene study based on the phenotypic similarity, we found that B3GALT6 is also responsible for a connective tissue disease, Ehlers-Danlos syndrome (progeroid form). Recessive loss-of-function mutations in B3GALT6 result in a spectrum of disorders affecting a broad range of skeletal and connective tissues characterized by lax skin, muscle hypotonia, joint dislocation, and spinal deformity. The pleiotropic phenotypes of the disorders indicate that B3GALT6 plays a critical role in a wide range of biological processes in various tissues, including skin, bone, cartilage, tendon, and ligament.
Resumo:
Tenascin-C is an adhesion-modulating extracellular matrix molecule that is highly expressed in tumor stroma and stimulates tumor cell proliferation. Adhesion of T98G glioblastoma cells to a fibronectin substratum is inhibited by tenascin-C. To address the mechanism of action, we performed a RNA expression analysis of T89G cells grown in the presence or absence of tenascin-C and found that tenascin-C down-regulates tropomyosin-1. Upon overexpression of tropomyosin-1, cell spreading on a fibronectin/tenascin-C substratum was restored, indicating that tenascin-C destabilizes actin stress fibers through down-regulation of tropomyosin-1. Tenascin-C also increased the expression of the endothelin receptor type A and stimulated the corresponding mitogen-activated protein kinase signaling pathway, which triggers extracellular signal-regulated kinase 1/2 phosphorylation and c-Fos expression. Tenascin-C additionally caused down-regulation of the Wnt inhibitor Dickkopf 1. In consequence, Wnt signaling was enhanced through stabilization of beta-catenin and stimulated the expression of the beta-catenin target Id2. Finally, our in vivo data derived from astrocytoma tissue arrays link increased tenascin-C and Id2 expression with high malignancy. Because increased endothelin and Wnt signaling, as well as reduced tropomyosin-1 expression, are closely linked to transformation and tumorigenesis, we suggest that tenascin-C specifically modulates these signaling pathways to enhance proliferation of glioma cells.
Resumo:
We analyzed the expression of glial hyaluronate-binding protein (GHAP), an integral component of the extracellular matrix, in aggregating brain cell cultures of fetal rat telencephalon using immunofluorescence. GHAP immunoreactivity appeared after 1 week in culture, simultaneous with the first deposits of myelin basic protein, and showed a development-dependent increase. Comparison of glia-enriched and neuron-enriched cultures showed that only glial cells express GHAP. Three peptide growth factors, epidermal growth factor, fibroblast growth factor and platelet-derived growth factor, which are known to stimulate the differentiation of glial cells, modulated the deposit of GHAP immunoreactivity. The 3-dimensional structure of aggregate cultures promoted GHAP deposition, suggesting that cell-cell interactions are required for extracellular matrix formation. Furthermore GHAP production seemed to depend on the developmental stage of the glial cells.