964 resultados para EXTRACELLULAR MATRIX


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human nasal polyps outgrowth culture were used to study the adhesion of Pseudomonas aeruginosa to respiratory cells. By transmission electron microscopy, bacteria associated with ciliated cells were identified trapped at the extremities of cilia, usually as aggregates of several bacterial cells. They were never seen at the interciliary spaces or attached along cilia. Bacteria were also seen to adhere to migrating cells of the periphery of the outgrowth culture. Using a model of repair of wounded respiratory epithelial cells in culture, we observed that the adhesion of P. aeruginosa to migrating cells of the edges of the repairing wounds was significantly higher than the adhesion to non-migrating cells and that adherent bacteria were surrounded by a fibrocnectin-containing fibrillar material The secretion of extracellular matrix components is involved in the process of epithelium repair following injury. To investigate the molecular basis of P. aeruginosa adhesion to migrating cells, bacteria were treated with a fibronectin solution before their incubation with the respiratory cells. P. aeruginosa treatment by fibronectin significantly increased their adhesion to migrating cells. Accordingly, we hypothesize that during cell migration, fibronectin secreted by epithelial cells may favour P. aeruginosa adhesion by establishing a bridge between the bacteria and the epithelial cell receptors. Such a mechanism may represent a critical step for P. aeruginosa infection of healing injured epithelium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thymus is a central lymphoid organ, in wich T cell precursors differentiale and generate most of the so-called T cell reprtoire. Along with a variety of acute infectious diseases, we and others determined important changes in both microenvironmental and lymphoid compartments of the organ. For example, one major and common feature observed in acute viral, bacterial and parasitic diseases, is a depletion of cortical thymocytes, mostly those bearing the CD4-CD8 double positive phenotype. This occurs simmultaneously to the relative enrichment in medullary CD4 or CD8 single positive cells, expressing high densities of the CD3 complex. Additionally we noticed a variety of changes in the thymic microenvironment (and particularly is epithelial component), comprising abnormal location of thymic epithelial cell subsets as well has a denser Ia-bearing cellular network. Moreover, the extracellular matrix network was altered with an intralobular increase of basement membrane proteins that positively correlated with the degree of thymocyte death. Lastly, anti-thymic cell antibodies were detected in both human and animal models of infectious diseases, and in some of them a phenomenon of molecular mimicry could be evidenced. Taken together, the data receiwed herein clearly show that the thymus should be regarded as a target in infectious diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We herein present an improved assay for detecting the presence of Trypanosoma cruzi in infected cultures. Using chagasic human sera (CHS), we were able to detect T. cruzi infection in primary cultures of both peritoneal macrophages and heart muscle cells (MHC). To avoid elevated background levels - hitherto observed in all experiments especially in those using HMC - CHS were preincubated with uninfected cells in monolayers or suspensions prior to being used for detection of T. cruzi in infected monolayers. Preincubation with cell suspensions gave better results than with monolayers, reducing background by up to three times and increasing sensitivity by to twenty times. In addition, the continous fibroplastic cell line L929 was shown to be suitable for preadsorption of CHS. These results indicate that the high background levels observed in previous reports may be due to the presence of human autoantibodies that recognize surface and/or extracellular matrix components in cell monolayers. We therefore propose a modified procedure that increases the performance of the ELISA method, making it an useful tool even in cultures that would otherwise be expected to present low levels of infection or high levels of background

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigates in vitro growth of human urinary tract smooth muscle cells under static conditions and mechanical stimulation. The cells were cultured on collagen type I- and laminin-coated silicon membranes. Using a Flexcell device for mechanical stimulation, a cyclic strain of 0-20% was applied in a strain-stress-time model (stretch, 104 min relaxation, 15 s), imitating physiological bladder filling and voiding. Cell proliferation and alpha-actin, calponin, and caldesmon phenotype marker expression were analyzed. Nonstretched cells showed significant better growth on laminin during the first 8 days, thereafter becoming comparable to cells grown on collagen type I. Cyclic strain significantly reduced cell growth on both surfaces; however, better growth was observed on laminin. Neither the type of surface nor mechanical stimulation influenced the expression pattern of phenotype markers; alpha-actin was predominantly expressed. Coating with the extracellular matrix protein laminin improved in vitro growth of human urinary tract smooth muscle cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Twenty Calomys callosus, Rengger, 1830 (Rodentia-Cricetidae) were studied in the early stage of the acute schistosomal mansoni infection (42nd day). The same number of Swiss Webster mice were used as a comparative standard. Liver and intestinal sections, fixed in formalin-Millonig and embedded in paraffin, were stained with hematoxilin and eosin, PAS-Alcian Blue, pH = 1.0 and 2.5, Lennert's Giemsa, Picrosirius plus polarization microscopy, Periodic acid methanamine silver, Gomori's silver reticulin and resorcin-fuchsin. Immunohistological study (indirect immunofluorescence and peroxidase labeled extravidin-biotin methods) was done with antibodies specific to pro-collagen III, fibronectin, elastin, condroitin-sulfate, tenascin, alpha smooth muscle actin, vimentin and desmin. The hepatic granulomas were small, reaching only 27 of the volume of the hepatic Swiss Webster granuloma. They were composed mainly by large immature macrophages, often filled by schistosomal pigment, characterizing an exsudative-macrophage granuloma type. The granulomas were situated in the parenchyma and in the portal space. They were often intravascular, poor of extracellular matrix components, except fibronectin and presented, sometimes alpha smooth muscle actin and vimentin positive cells. The C. callosus intestinal granulomas were similar to Swiss Webster, showing predominance of macrophages. Therefore, the C. callosus acquire very well the Schistosoma mansoni infection, without developing strong hepatic acute granulomatous reaction, suggesting lack of histopathological signs of hypersensitivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES: Tissue engineering methods can be applied to regenerate diseased, or congenitally missing, urinary tract tissues. Urinary tract tissue cell cultures must be established in vitro and adequate matrices, acting as cell carriers, must be developed. Although degradable and nondegradable polymer matrices offer adequate mechanical stability, they are not optimal for cell adherence and growth. To overcome this problem, extracellular matrix proteins, permitting cell adhesion and regulation of cell proliferation and differentiation, can be adsorbed to the surface-modified polymer. METHODS: In this study, nondegradable polymer films, poly(ethylene terephthalate), were used as an experimental model. Films were modified by graft polymerization of acrylic acid to subsequently allow collagen type I and III immobilization. The following adhesion, proliferation of human urothelial cells, and induction of their stratification were analyzed. RESULTS: Collagen adsorption on 0.2 microg/cm2 poly(acrylic acid)-grafted polymer films rendered the matrix apt for human urothelial cell adhesion and proliferation. Furthermore, stratification of urothelial cells was demonstrated on these surface-modified matrices. CONCLUSIONS: These results have shown that surface-modified polymer matrices can be used to act as cell carriers for cultured human urothelial cells. Such a cell-matrix construct could be applied in reparative surgery of the urinary tract.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SUMMARY : Skin wound repair is a complex and highly coordinated process, where a variety of cell types unite to regenerate the damaged tissue. Several works have elucidated cellular and molecular mechanisms, in which mesenchymal-epidermal interactions play an essential role for the regulation of skin homeostasis and repair. Peroxisome Proliferator-Activated Receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear receptor superfamily. Three related isotypes (PPARα, PPARß/δ and PPARγ) have been found, which exhibit distinct tissue distribution and specific physiological functions. PPARß/δ was identified as a crucial player of skin homeostasis. In the mouse skin, PPARß/δ has been described to control proliferation-differentiation state, adhesion and migration, and survival of the keratinocytes during healing. PPARß/δ has been implicated as well in the development of the hair follicles, in which mesenchymal-secreted hepatocyte growth factor (HGF) is involved. These data suggest that the biological activity of PPARß/δ is modulated by mesenchymal-epidermal interactions and that, in turn, PPARß/δ also modulates some of these signals. The aim of the present work was to elucidate the nature of the signals exchanged between the epidermis and dermis compartments, and more particularly those which are under the control of PPARß/δ. In the first part of the study, we showed that PPARß/8 in dermal fibroblasts down-regulates the mitotic activity of keratinocytes by inhibiting the IL-1 signalling pathway via the production of secreted IL-1 receptor antagonist (sIL-1Ra), a natural antagonist of this signalling. The regulation of IL-1 signalling by PPARß/δ is required for anon-pathological skin wound repair. These findings provide evidence for a novel homeostatic control of keratinocyte proliferation and differentiation mediated by the regulation of IL-1 signalling via dermal PPARß/δ fibroblasts. Proteolysis of the extracellular matrix (ECM) is a key process involved in wound repair and modifications in its activity are often associated with an alteration óf the wound closure. This process implies specific proteinases, as matrix metalloproteinases (MMPs), which are finely modulated by IL-1 signalling. In line with the first results, the second part of the work showed that MMP8 and MMP13, which are two important collagenases involved in mouse skin wound repair, are regulated by PPARß/δ. Their expression is indirectly down-regulated by dermal PPARß/δ, via the production of sIL-1Ra, resulting in the inhibition of IL-1 signalling, known to regulate the expression of numerous MMPs. We suggest that, in absence of PPARß/δ, the positive regulation of these two collagenases could participate to the delay of skin wound healing, which has been observed in mice deleted for PPARßlS. The potential therapeutic role of PPARß/b could be as well extending to inflammatory and hyperproliferative skin diseases involving IL-1 signalling, such as psoriasis or skin cancers. Quite interestingly, MMP1 (analogue of mouse MMP13) plays an essential role in human photoaging, suggesting that PPARß/δ could as well be an attractive target for photoprotection. RESUME : La cicatrisation est un processus complexe et extrêmement organisé, impliquant un grand nombre de cellules qui s'unissent pour régénérer le tissu endommagé. De nombreux travaux nous ont éclairés sur les mécanismes cellulaires et moléculaires, dans lesquels les interactions épidermo-mésenchymateuses détiennent un rôle capital à la fois dans la régulation de l'homéostasie et dans la réparation de la peau. PPAR (Peroxisome proliferatar-activated receptor), qui appartient à la superfamille des récepteurs nucléaires, se définit comme un facteur de transcription activé par des ligands très spécifiques. Trois isotypes (PPARa, PPARß/δ et PPARy) ont été décrits et sont caractérisés par une distribution tissulaire et des fonctions physiologiques clairement définies. PPARß/δ a été identifié comme étant un important acteur dans l'homéostasie de la peau. Chez la souris, il a été décrit comme contrôlant l'état de prolifération et de différenciation, le processus d'adhésion et de migration, ainsi que la survie des kératinocytes au cours de la cicatrisation. PPARßIS a également été défini comme contrôlant le développement des follicules pileux, impliquant la sécrétion par le mésenchyme du facteur de croissance HGF. Ces données suggèrent que l'activité biologique de PPARß/δ est modulée par des interactions épidermo-mésenchymateuses, et qu'en retour, il possède la capacité de moduler certains de ces signaux. L`objectif de ce travail a été d'élucider la nature des signaux échangés entre les compartiments épidermique et dermique, et plus particulièrement ceux qui sont sous le contrôle de PPARß/δ. Dans la première partie de l'étude, nous avons montré que les fibroblastes exprimant PPARß/δ réduisent l'activité mitotique des kératinocytes en inhibant la voie de signalisation IL-1, via la production de sIL-1Ra (secreted IL-1 receptor antagonist), défini comme un antagoniste naturel de cette voie de signalisation. La régulation de cette dernière par PPARß/δ est donc nécessaire pour une cicatrisation de type non pathologique. Ces résultats offrent donc une nouvelle preuve du contrôle de l'homéostasie et de l'état de prolifération/différenciation des kératinocytes par les fibroblastes exprimant PPARß/δ, en régulant la voie de signalisation IL-1. Le mécanisme de dégradation de la matrice extracellulaire (MEC) est une étape essentielle lors du processus de cicatrisation. Ainsi des modifications de cette activité protéolytïque sont souvent associées à une altération de la fermeture de la plaie. Ce processus implique des protéinases, comme les MMPs, qui sont finement modulés par la voie de signalisation IL-1. En accord avec les premiers résultats, la seconde partie des nos travaux a montré que les collagénases MMP8 et MMP13, connues pour être d'importantes molécules impliquées lors de la réparation tissulaire chez la souris, sont modulées par l'activité de PPARß/δ. Leurs expressions sont indirectement régulées par PPARß/δ, via la production. de sIL-1 Ra, entraînant ainsi l'inhibition de la voie de signalisation IL-1, décrite pour réguler l'expression de nombreuses MMPs, Nous suggérons donc qu'en absence de PPARß/δ, la régulation de ces deux collagénases pourrait être impliquée dans le retard de cicatrisation, observé chez les souris déficientes pour PPARß/δ. L'activité biologique de PPARß/δ pourrait être ainsi étendue à des maladies hyperproliferatives et inflammatoires de la peau, impliquant la voie de signalisation IL-1, comme le psoriasis ou certains cancers de la peau, et ce à des fins thérapeutiques. Il est aussi intéressant de relever que chez l'homme, MMP1 (présenté comme l'analogue de MMP13 de la souris} joue un rôle primordial dans le photo-vieillissement, nous suggérons donc que PPARß/δ pourrait ainsi être une cible attrayante concernant la photoprotection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zebrafish is a good model for studying regeneration because of the rapidity with which it occurs. Better understanding of this process may lead in the future to improvement of the regenerating capacity of humans. Signaling factors are the second largest category of genes, regulated during regeneration after the regulators of wound healing. Major developmental signaling pathways play a role in this multistep process, such as Bmp, Fgf, Notch, retinoic acid, Shh, and Wnt. In the present study, we focus on TGF-β-induced genes, bigh3 and bambia. Bigh3 encodes keratoepithelin, a protein first identified as an extracellular matrix protein reported to play a role in cell adhesion, as well as in cornea formation and osteogenesis. The expression of bigh3 in zebrafish fins has previously been reported. Here we demonstrate that tgf-b1 and tgf-b3 mRNA reacted with delay, first showing no regulation at 3âeuro0/00dpa, followed by upregulation at 4 and 5âeuro0/00dpa. Tgf-b1, tgf-2, and tgf-brII mRNA were back to normal levels at 10âeuro0/00dpa. Only tgf-b3 mRNA was still upregulated at that time. Bigh3 mRNA followed the upregulation of tgf-b1, while bambia mRNA behaved similarly to tgf-b2 mRNA. We show that upregulation of bigh3 and bambia mRNA correlated with the process of fin regeneration and regulation of TGF-b signaling, suggesting a new role for these proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cervical lymph nodes biopsies from 31 HIV positive patients (with or without AIDS) were studied by histologic methods and immunohistochemistry (StreptABC staining of paraffin sections) to identify cellular and extracellular matrix components. The results were the following: (1) the biopsies were included in the stages of follicular hyperplasia without fragmentation FH-FF (4 cases); follicular hyperplasia with follicular fragmentation FH+FF (16 cases); follicular involution FI (6 cases) and diffuse pattern DP (5 cases); (2) the most important alteration was the germinal centers disruption due to follicle lysis, which began in the light zone; (3) there was coincidence between intrafollicular hemorrhages and segmental hyaline mycroangiopathy; (4) during the progression of the disease occurred: (a) an increase in the number of mast cells, CD68+ and Mac387+ macrophages; (b) a diffuse augment of collagen III, elastic fibers, laminin, fibronectin and proteoglycans; (c) maintenance of Factor VIII - related antigens in the vascular endothelial cells, with decrease in the expression of Ulex-Europeus I lectin. Follicular hyperplasia (FH-FF or FH+FF) was the most common histologic pattern recognized in the lymph nodes of patients without AIDS and follicular involution and difuse pattern were seen in those who had AIDS. The results indicate that the lymph node biopsies may provide important information about the evolutive stage of the disease and its prognosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New blood vessel formation, a process referred to as angiogenesis, is essential for embryonic development and for many physiological and pathological processes during postnatal life, including cancer progression. Endothelial cell adhesion molecules of the integrin family have emerged as critical mediators and regulators of angiogenesis and vascular homeostasis. Integrins provide the physical interaction with the extracellular matrix necessary for cell adhesion, migration and positioning, and induction of signaling events essential for cell survival, proliferation and differentiation. Antagonists of integrin alpha V beta 3 suppress angiogenesis in many experimental models and are currently tested in clinical trials for their therapeutic efficacy against angiogenesis-dependent diseases, including cancer. Furthermore, interfering with signaling pathways downstream of integrins results in suppression of angiogenesis and may have relevant therapeutic implications. In this article we review the role of integrins in endothelial cell function and angiogenesis. In the light of recent advances in the field, we will discuss their relevance as a therapeutic target to suppress tumor angiogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Clinical small-caliber vascular prostheses are unsatisfactory. Reasons for failure are early thrombosis and late intimal hyperplasia. We thus prepared biodegradable small-caliber vascular prostheses using electrospun polycaprolactone (PCL) with slow-releasing paclitaxel (PTX), an antiproliferative drug. METHODS AND RESULTS: PCL solutions containing PTX were used to prepare nonwoven nanofibre-based 2-mm ID prostheses. Mechanical morphological properties and drug loading, distribution, and release were studied in vitro. Infrarenal abdominal aortic replacement was carried out with nondrug-loaded and drug-loaded prostheses in 18 rats and followed for 6 months. Patency, stenosis, tissue reaction, and drug effect on endothelialization, vascular remodeling, and neointima formation were studied in vivo. In vitro prostheses showed controlled morphology mimicking extracellular matrix with mechanical properties similar to those of native vessels. PTX-loaded grafts with suitable mechanical properties and controlled drug-release were obtained by factorial design. In vivo, both groups showed 100% patency, no stenosis, and no aneurysmal dilatation. Endothelial coverage and cell ingrowth were significantly reduced at 3 weeks and delayed at 12 and 24 weeks in PTX grafts, but as envisioned, neointima formation was significantly reduced in these grafts at 12 weeks and delayed at 6 months. CONCLUSIONS: Biodegradable, electrospun, nanofibre, polycaprolactone prostheses are promising because in vitro they maintain their mechanical properties (regardless of PTX loading), and in vivo show good patency, reendothelialize, and remodel with autologous cells. PTX loading delays endothelialization and cellular ingrowth. Conversely, it reduces neointima formation until the end point of our study and thus may be an interesting option for small caliber vascular grafts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vascular integrins are essential regulators and mediators of physiological and pathological angiogenesis, including tumor angiogenesis. Integrins provide the physical interaction with the extracellular matrix (ECM) necessary for cell adhesion, migration and positioning, and induce signaling events essential for cell survival, proliferation and differentiation. Integrins preferentially expressed on neovascular endothelial cells, such as alphaVbeta3 and alpha5beta1, are considered as relevant targets for anti-angiogenic therapies. Anti-integrin antibodies and small molecular integrin inhibitors suppress angiogenesis and tumor progression in many animal models, and are currently tested in clinical trials as anti-angiogenic agents. Cyclooxygense-2 (COX-2), a key enzyme in the synthesis of prostaglandins and thromboxans, is highly up-regulated in tumor cells, stromal cells and angiogenic endothelial cells during tumor progression. Recent experiments have demonstrated that COX-2 promotes tumor angiogenesis. Chronic intake of nonsteroidal anti-inflammatory drugs and COX-2 inhibitors significantly reduces the risk of cancer development, and this effect may be due, at least in part, to the inhibition of tumor angiogenesis. Endothelial cell COX-2 promotes integrin alphaVbeta3-mediated endothelial cell adhesion, spreading, migration and angiogenesis through the prostaglandin-cAMP-PKA-dependent activation of the small GTPase Rac. In this article, we review the role of integrins and COX-2 in angiogenesis, their cross talk, and discuss implications relevant to their targeting to suppress tumor angiogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eosinophils preferentially accumulate at sites of chronic allergic diseases such as bronchial asthma. The mechanisms by which selective eosinophil migration occurs are not fully understood. However, interactions of cell-surface adhesion molecules on the eosinophil with molecular counterligands on endothelial and epithelial cells, and on extracellular matrix proteins, are likely to be critical during the recruitment process. One possible mechanism for selective eosinophil recruitment involves the alpha4beta 1 (VLA-4) integrin which is not expressed on neutrophils. Correlations have been found between infiltration of eosinophils and endothelial expression of VCAM-1, the ligand for VLA-4, in the lungs of asthmatic individuals as well as in late phase reactions in the lungs, nose and skin. Epithelial and endothelial cells respond to the Th2-type cytokines IL-4 and IL-13 with selective de novo expression of VCAM-1, consistent with the possible role of VCAM-1/VLA-4 interactions in eosinophil influx during allergic inflammation. Both beta 1 and beta 2 integrins on eosinophils exist in a state of partial activation. For example, eosinophils can be maximally activated for adhesion to VCAM-1 or fibronectin after exposure to beta 1 integrin-activating antibodies or divalent cations, conditions that do not necessarily affect the total cell surface expression of beta 1 integrins. In contrast, cytokines like IL-5 prevent beta 1 integrin activation while promoting beta 2 integrin function. Furthermore, ligation of integrins can regulate the effector functions of the cell. For example, eosinophil adhesion via beta 1 and/or beta 2 integrins has been shown to alter a variety of functional responses including degranulation and apoptosis. Thus, integrins appear to be important in mediating eosinophil migration and activation in allergic inflammation. Strategies that interfere with these processes may prove to be useful for treatment of allergic diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The authors present morphogenetic and biomechanical approaches on the concept of the Schistosoma mansoni granulomas, considering them as organoid structures that depend on cellular adhesion and sorting, forming rearrangement into hierarchical concentric layers, creating tension-dependent structures, aiming to acquire round form, since this is the minimal energy form, in which opposing forces pull in equally from all directions and are in balance. From the morphogenetic point of view, the granulomas function as little organs, presenting maturative and involutional stages in their development with final disappearance (pre-granulomatous stages, subdivided in: weakly and/or initial reactive and exudative; granulomatous stages: exudative-productive, productive and involutional). A model for the development of granulomas was suggested, according to the following stages: encapsulating, focal histolysis, fiber production, orientation and compacting and involution and desintegration. The authors concluded that schistosomal granuloma is not a tangled web of individual cells and fibers, but an organized structure composed by host and parasite components, which is not formed to attack the miracidia, but functions as an hybrid interface between two different phylogenetic beings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summary : Platelet Derived Growth Factor (PDGF) and Transforming Growth Factor-ß (TGF-ß) are two crucial growth factors in tissue repair and regeneration. They control migration and proliferation of macrophages and fibroblasts, as well as myofibroblast differentiation and synthesis of the new connective tissue. The transcription factor Nuclear Factor I-C (NFI-C) has been implicated in the TGF-ß pathway and regulation of extracellular matrix proteins in vitro. This suggests a possible implication of NFI-C in tissue repair. In this study, our purpose was to identify the NFI-C target genes in TGF-ß1 pathway activation and define the relationship between these two factors in cutaneous wound healing process. High-throughput genomic analysis in wild-type and NFI-C knock-out embryonic fibroblasts indicated that NFI-C acts as a repressor of the expression of genes which transcriptional activity is enhanced by TGF-ß. Interestingly, we found an over representation of genes involved in connective tissue inflammation and repair. In accordance with the genomic analysis, NFI-C-/- mice showed an improvement of skin healing during the inflammatory stage. Analysis of this new phenotype indicated that the expression of PDGFA and PDGF-Ra genes were increased in the wounds of NFI-C-/- mice resulting in early recruitment of macrophages and fibroblasts in the granulation tissue. In correlation with the stimulation effect of TGF-ß on myofibroblast differentiation we found an increased differentiation of these cells in null mice, providing a rationale for rapid wound closure. Thus, in the absence of NFI-C, both TGF-ß and PDGF pathways may be activated, leading to enhanced healing process. Therefore, the inhibition of NFI-C expression could constitute a suitable therapy for healing improvement. In addition, we identified a delay of hair follicle cycle initiation in NFI-C-/- mice. This prompted us to investigate the role of NFI-C in skin appendage. The transition from a quiescent to a proliferative phase requires a perfect timing of signalling modulation, leading to stem cell activation. As a consequence of cycle initiation delay in null mice, the activation of signalling involved in cell proliferation was also retarded. Interestingly, at the crucial moment of cell fate determination, we identified a decrease of CD34 gene in mutant mice. Since CD34 protein is involved in migration of multipotent cells, we suggest that NFI-C may be involved in stem cell mobilisation required for hair follicle renewal. Further investigations of the role of NFI-C in progenitor cell activation will lead to a better understanding of tissue regeneration and raise the possibility of treating alopecia with NFI-C-targeting treatment. In summary, this study demonstrates new regenerative functions of NFI-C in adult mice, which regulates skin repair and hair follicle renewal. Résumé : PDGF et TGF-ß sont des facteurs important du mécanisme de défense immunitaire. Ils influencent la prolifération et migration des macrophages et des fibroblastes, ainsi que la différenciation des myofibroblastes et la formation du nouveau tissu conjonctif. Le facteur de transcription NFI-C a été impliqué dans la voie de signalisation de TGF-ß et dans 1a régulation de l'expression des protéines de la matrice extracellulaire in vitro. Ces études antérieures laissent supposer que NFI-C serait un facteur important du remodelage tissulaire. Cependant le rôle de NFI-C dans un tissu comme la peau n'a pas encore été étudié. Dans ce travail, le but a été de d'identifier la relation qu'il existe entre I~1FI-C et TGF-ßl à un niveau transcriptionnel et dans le processus de cicatrisation cutanée in vivo. Ainsi, une analyse génétique à grande échelle, a permis d'indiquer que NFI-C agit comme un répresseur sur l'expression des gènes dont l'activité transcriptionnelle est activée par TGF-ß. De plus nous avons identifié un groupe de gènes qui controlent le développement et l'inflammation du tissue conjonctif. En relation avec ce résultat, l'absence de NFI-C dans la peau induit une cicatrisation plus rapide pendant la phase inflammatoire. Durant cette période, nous avons montré que les expressions de PDGFA et PDGFRa seraient plus élevées en absence de NFI-C. En conséquence, l'activation de la voie de PDGF induit une infiltration plus importante des macrophages et fibroblastes dans le tissue granuleux des souris mutantes. De plus, en corrélation avec le rôle de TGF-ßl dans la différenciation des myofibroblasts, nous avons observé une différenciation plus importante de ces cellules chez les animaux knock-out, ce qui peut expliquer une contraction plus rapide de la plaie. De plus, nous avons découvert que NFI-C est impliqué dans l'initiation du cycle folliculaire. La caractérisation de ce nouveau phénotype a montré un ralentissement de la transition telogène-anagène des souris NFI-C-/-. Or, un événement clé de cette transition est la modulation de plusieurs signaux moléculaires aboutissant à' l'activation des cellules souches. En corrélation avec le decalage du cycle, l'activation de ces signaux est également décalée dans les souris NFI-C-/-. Ainsi, au commencement de l'anagène, la prolifération des keratinocytes,NFI-C-/- est retardée et corrèle avec une diminution de l'expression de CD34, une protéine responsable de la détermination du migration des cellules multipotentes. Ainsi, NFI-C semble être impliqué dans la mobilisation des cellules souches qui sont nécessaires au renouvellement folliculaire. En résumé, NFI-C est impliqué dans la régulation des signaux moléculaires nécessaires à la réparation tissulaire et son inhibition pourrait constituer un traitement de la cicatrisation. L'analyse de son rôle dans l'activation des cellules souches permettrait de mieux comprendre le renouvellement tissulaire et, à long terme, d'améliorer les techniques de greffe des cellules souches épithéliales ou consituter une cible pour le traitement de l'alopecie.