890 resultados para EXAMPLE
Resumo:
Exhumed faults hosting hydrothermal systems provide direct insight into relationships between faulting and fluid flow, which in turn are valuable for making hydrogeological predictions in blind settings. The Grimsel Breccia Fault (Aar massif, Central Swiss Alps) is a late Neogene, exhumed dextral strike-slip fault with a maximum displacement of 25–45 m, and is associated with both fossil and active hydrothermal circulation. We mapped the fault system and modelled it in three dimensions, using the distinctive hydrothermal mineralisation as well as active thermal fluid discharge (the highest elevation documented in the Alps) to reveal the structural controls on fluid pathway extent and morphology. With progressive uplift and cooling, brittle deformation inherited the mylonitic shear zone network at Grimsel Pass; preconditioning fault geometry into segmented brittle reactivations of ductile shear zones and brittle inter-shear zone linkages. We describe ‘pipe’-like, vertically oriented fluid pathways: (1) within brittle fault linkage zones and (2) through alongstrike- restricted segments of formerly ductile shear zones reactivated by brittle deformation. In both cases, low-permeability mylonitic shear zones that escaped brittle reactivation provide important hydraulic seals. These observations show that fluid flow along brittle fault planes is not planar, but rather highly channelised into sub-vertical flow domains, with important implications for the exploration and exploitation of geothermal energy.
Resumo:
Growing scarcity, increasing demand and bad management of water resources are causing weighty competition for water and consequently managers are facing more and more pressure in an attempt to satisfy users? requirement. In many regions agriculture is one of the most important users at river basin scale since it concentrates high volumes of water consumption during relatively short periods (irrigation season), with a significant economic, social and environmental impact. The interdisciplinary characteristics of related water resources problems require, as established in the Water Framework Directive 2000/60/EC, an integrated and participative approach to water management and assigns an essential role to economic analysis as a decision support tool. For this reason, a methodology is developed to analyse the economic and environmental implications of water resource management under different scenarios, with a focus on the agricultural sector. This research integrates both economic and hydrologic components in modelling, defining scenarios of water resource management with the goal of preventing critical situations, such as droughts. The model follows the Positive Mathematical Programming (PMP) approach, an innovative methodology successfully used for agricultural policy analysis in the last decade and also applied in several analyses regarding water use in agriculture. This approach has, among others, the very important capability of perfectly calibrating the baseline scenario using a very limited database. However one important disadvantage is its limited capacity to simulate activities non-observed during the reference period but which could be adopted if the scenario changed. To overcome this problem the classical methodology is extended in order to simulate a more realistic farmers? response to new agricultural policies or modified water availability. In this way an economic model has been developed to reproduce the farmers? behaviour within two irrigation districts in the Tiber High Valley. This economic model is then integrated with SIMBAT, an hydrologic model developed for the Tiber basin which allows to simulate the balance between the water volumes available at the Montedoglio dam and the water volumes required by the various irrigation users.
Resumo:
The figure of protection "micro-reserves" was created in the Region of Valencia (ANONYMOUS, 1994) with the aim of protecting endangered plant species. This is one of the areas of greatest floristic richness and uniqueness of the western Mediterranean. In this area rare, endemic or threatened vascular flora has a peculiar distribution: they appear to form small fragments spread over the entire region (LAGUNA, 1994; LAGUNA, 2001) The protection of every these small populations of great scientific value has significant challenges. It doesn´t try to protect every species that set out in Annex IV of the by then existing Law 4 / 1989 (repealed in 2007), or to protect to the most ecological level with the creation of Natural Protected Area but an intermediate level: the plant community of small size. According to the decree: “as Micro-Reserve will be declared the natural parcels of land under 20 hectares that contain a high concentration of rare plants, endemic, threatened or of high scientific interest” (ANONYMOUS, 1994) . Of course, the statement of an area as micro-reserve carries certain prohibitions that are harmful to the vegetal community
Resumo:
This paper analyzes the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is defined as an indicator of the generic ompetence: Use of Technology. Additionally, we show that using CAS could help to enhance the following generic competences: Self Learning, Planning and Organization, Communication and Writing, Mathematical and Technical Writing, Information Management and Critical Thinking.
Resumo:
Systems integration is the origin of most major difficulties found in the engineering design of aeronautical vehicles. The whole design team must assure that each subsystem accomplishes its particular goals and that, together with the rest of the systems, they all meet the general aircraft requirements.Design and building of UAS is a field of actuation to which leading Universities, research Centers and Aeronautical designers have dedicated a lot of effort. In recent years, a team of students, lecturers and professors at the Escuela Universitaria de Ingeniería Técnica Aeronáutica (EUITA) have been working on the design and building of a UAS for civil observation. The design of multi-mission Unmanned Aerial Vehicles (UAVs) has seen a rapid progress in the last years. A wide variety of designs and applications, some of them really ingenious, have been proposed. The project, which has been going on as a teamwork experience for the last ten years, consists of the design and building of a UAV, and its peculiarity is that it has been carried out entirely by undergraduate students, as part of their Final Research Project. The students face a challenge that includes all the features and stages of an authentic engineering project. We present the current moment of evolution in the process, together with a description of the main difficulties the project has undergone, as a global experience in engineering design and development.
Resumo:
Through progress in medical imaging, image analysis and finite element (FE) meshing tools it is now possible to extract patient-specific geometries from medical images of abdominal aortic aneurysms(AAAs), and thus to study clinically-relevant problems via FE simulations. Such simulations allow additional insight into human physiology in both healthy and diseased states. Medical imaging is most often performed in vivo, and hence the reconstructed model geometry in the problem of interest will represent the in vivo state, e.g., the AAA at physiological blood pressure. However, classical continuum mechanics and FE methods assume that constitutive models and the corresponding simulations begin from an unloaded, stress-free reference condition.
Resumo:
CO2 Emission from two old mine drillings (Mt. Amiata, Central Italy) as a possible example of storage and leakage of deep-seated CO2
Resumo:
Con motivo de la celebracio?n en 2008 del An?o Europeo del Dia?logo Intercultural, el Con- sejo de Europa promovio? una serie de encuentros y foros de debate en torno al papel de Europa en la gestio?n de la inmigracio?n, desde sus mu?ltiples dimensiones. Entre ellas, se encuentra el a?mbito deportivo, por su papel socializador como elemento cultural de dia?logo e identidad, aun- que tambie?n como espacio de confrontacio?n y discriminacio?n, que concierne tanto a participantes como espectadores, desde una perspectiva global y local. Con el objetivo de contrastar experien- cias y reflexiones a este respecto, tuvo lugar la primera conferencia europea con el nombre ?De- porte y Diversidad?, celebrada en Estrasburgo y organizada por la Agencia para la Educacio?n a trave?s del Deporte, el Consejo de Europa - a trave?s del EPAS - y la Universidad de Estrasburgo.
Resumo:
Linked Data is the key paradigm of the Semantic Web, a new generation of the World Wide Web that promises to bring meaning (semantics) to data. A large number of both public and private organizations have published their data following the Linked Data principles, or have done so with data from other organizations. To this extent, since the generation and publication of Linked Data are intensive engineering processes that require high attention in order to achieve high quality, and since experience has shown that existing general guidelines are not always sufficient to be applied to every domain, this paper presents a set of guidelines for generating and publishing Linked Data in the context of energy consumption in buildings (one aspect of Building Information Models). These guidelines offer a comprehensive description of the tasks to perform, including a list of steps, tools that help in achieving the task, various alternatives for performing the task, and best practices and recommendations. Furthermore, this paper presents a complete example on the generation and publication of Linked Data about energy consumption in buildings, following the presented guidelines, in which the energy consumption data of council sites (e.g., buildings and lights) belonging to the Leeds City Council jurisdiction have been generated and published as Linked Data.
Resumo:
Linkage disequilibrium analysis can provide high resolution in the mapping of disease genes because it incorporates information on recombinations that have occurred during the entire period from the mutational event to the present. A circumstance particularly favorable for high-resolution mapping is when a single founding mutation segregates in an isolated population. We review here the population structure of Finland in which a small founder population some 100 generations ago has expanded into 5.1 million people today. Among the 30-odd autosomal recessive disorders that are more prevalent in Finland than elsewhere, several appear to have segregated for this entire period in the “panmictic” southern Finnish population. Linkage disequilibrium analysis has allowed precise mapping and determination of genetic distances at the 0.1-cM level in several of these disorders. Estimates of genetic distance have proven accurate, but previous calculations of the confidence intervals were too small because sampling variation was ignored. In the north and east of Finland the population can be viewed as having been “founded” only after 1500. Disease mutations that have undergone such a founding bottleneck only 20 or so generations ago exhibit linkage disequilibrium and haplotype sharing over long genetic distances (5–15 cM). These features have been successfully exploited in the mapping and cloning of many genes. We review the statistical issues of fine mapping by linkage disequilibrium and suggest that improved methodologies may be necessary to map diseases of complex etiology that may have arisen from multiple founding mutations.
Resumo:
By using a simplified model of small open liquid-like clusters with surface effects, in the gas phase, it is shown how the statistical thermodynamics of small systems can be extended to include metastable supersaturated gaseous states not too far from the gas–liquid equilibrium transition point. To accomplish this, one has to distinguish between mathematical divergence and physical convergence of the open-system partition function.
Resumo:
Evolutionary, pattern forming partial differential equations (PDEs) are often derived as limiting descriptions of microscopic, kinetic theory-based models of molecular processes (e.g., reaction and diffusion). The PDE dynamic behavior can be probed through direct simulation (time integration) or, more systematically, through stability/bifurcation calculations; time-stepper-based approaches, like the Recursive Projection Method [Shroff, G. M. & Keller, H. B. (1993) SIAM J. Numer. Anal. 30, 1099–1120] provide an attractive framework for the latter. We demonstrate an adaptation of this approach that allows for a direct, effective (“coarse”) bifurcation analysis of microscopic, kinetic-based models; this is illustrated through a comparative study of the FitzHugh-Nagumo PDE and of a corresponding Lattice–Boltzmann model.