948 resultados para ENRICHED URANIUM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

IPOD Leg 49 recovered basalts from 9 holes at 7 sites along 3 transects across the Mid-Atlantic Ridge: 63°N (Reykjanes), 45°N and 36°N (FAMOUS area). This has provided further information on the nature of mantle heterogeneity in the North Atlantic by enabling studies to be made of the variation of basalt composition with depth and with time near critical areas (Iceland and the Azores) where deep mantle plumes are thought to exist. Over 150 samples have been analysed for up to 40 major and trace elements and the results used to place constraints on the petrogenesis of the erupted basalts and hence on the geochemical nature of their source regions. It is apparent that few of the recovered basalts have the geochemical characteristics of typical "depleted" midocean ridge basalts (MORB). An unusually wide range of basalt compositions may be erupted at a single site: the range of rare earth patterns within the short section cored at Site 413, for instance, encompasses the total variation of REE patterns previously reported from the FAMOUS area. Nevertheless it is possible to account for most of the compositional variation at a single site by partial melting processes (including dynamic melting) and fractional crystallization. Partial melting mechanisms seem to be the dominant processes relating basalt compositions, particularly at 36°N and 45°N, suggesting that long-lived sub-axial magma chambers may not be a consistent feature of the slow-spreading Mid-Atlantic Ridge. Comparisons of basalts erupted at the same ridge segment for periods of the order of 35 m.y. (now lying along the same mantle flow line) do show some significant inter-site differences in Rb/Sr, Ce/Yb, 87Sr/86Sr, etc., which cannot be accounted for by fractionation mechanisms and which must reflect heterogeneities in the mantle source. However when hygromagmatophile (HYG) trace element levels and ratios are considered, it is the constancy or consistency of these HYG ratios which is the more remarkable, implying that the mantle source feeding a particular ridge segment was uniform with respect to these elements for periods of the order of 35 m.y. and probably since the opening of the Atlantic. Yet these HYG element ratios at 63°N are very different from those at 45°N and 36°N and significantly different from the values at 22°N and in "MORB". The observed variations are difficult to reconcile with current concepts of mantle plumes and binary mixing models. The mantle is certainly heterogeneous, but there is not simply an "enriched" and a "depleted" source, but rather a range of sources heterogeneous on different scales for different elements - to an extent and volume depending on previous depletion/enrichment events. HYG element ratios offer the best method of defining compositionally different mantle segments since they are little modified by the fractionation processes associated with basalt generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age-progressive, linear seamount chains in the northeast Pacific appear to have formed as the Pacific plate passed over a set of stationary hotspots; however, some anomalously young ages and the lack of an "enriched" isotopic signature in basalts from the seamounts do not fit the standard hotspot model. For example, published ages (28-30 Ma) for basalts dredged from the Patton-Murray seamount platform in the Gulf of Alaska are 2-4 m.y. younger than the time when the platform was above the Cobb hotspot. However, the lowermost basalt recovered by ocean drilling on Patton-Murray yielded a 40Ar-39Ar age of 33 Ma. This age exactly coincides with the time when the seamount platform was above the Cobb hotspot, consistent with a stationary, long-lived mantle plume. A 27 Ma alkalic basalt flow recovered 8 m above the 33 Ma basalt is similar in age and composition to the previously dredged basalts, and may be the alkalic capping phase typical of many hotspot volcanoes. A 17 Ma tholeiitic basalt sill recovered 5 m above the 27 Ma basalt was emplaced long after the seamount platform moved away from the hotspot, and may be associated with a period of intraplate extension. Anomalously young phases of volcanism on this and other hotspot seamounts suggest that they can be volcanically rejuvenated by nonhotspot causes, but this rejuvenation does not rule out the hotspot model as an explanation for the initial creation of the seamount platform. The lack of an "enriched" isotopic signature in any of these basalts shows that enriched compositions are not necessary characteristics of plume-related basalts. The isotopic compositions of the lower basalts are slightly more depleted than the 0-9 Ma products of the Cobb hotspot, despite the fact that the hotspot was closer to a spreading ridge at 0-9 Ma. It appears that this hotspot, like several others, has become more enriched with time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the Sr, Nd and Pb isotopic compositions (1) of 66 lava flows and dikes spanning the circa 15 Myr subaerial volcanic history of Gran Canaria and (2) of five Miocene through Cretaceous sediment samples from DSDP site 397, located 100 km south of Gran Canaria. The isotope ratios of the Gran Canaria samples vary for 87Sr/86Sr: 0.70302-0.70346, for 143Nd/144Nd: 0.51275-0.51298, and for 206Pb/204Pb: 18.76-20.01. The Miocene and the Pliocene-Recent volcanics form distinct trends on isotope correlation diagrams. The most SiO2-undersaturated volcanics from each group have the least radiogenic Sr and most radiogenic Pb, whereas evolved volcanics from each group have the most radiogenic Sr and least radiogenic Pb. In the Pliocene-Recent group, the most undersaturated basalts also have the most radiogenic Nd, and the evolved volcanics have the least radiogenic Nd. The most SiO2-saturated basalts have intermediate compositions within each age group. Although the two age groups have overlapping Sr and Nd isotope ratios, the Pliocene-Recent volcanics have less radiogenic Pb than the Miocene volcanics. At least four components are required to explain the isotope systematics of Gran Canaria by mixing. There is no evidence for crustal contamination in any of the volcanics. The most undersaturated Miocene volcanics fall within the field for the two youngest and westernmost Canary Islands in all isotope correlation diagrams and thus appear to have the most plume-like (high 238U/204Pb) HIMU-like composition. During the Pliocene-Recent epochs, the plume was located to the west of Gran Canaria. The isotopic composition of the most undersaturated Pliocene-Recent volcanics may reflect entrainment of asthenospheric material (with a depleted mantle (DM)-like composition), as plume material was transported through the upper asthenosphere to the base of the lithosphere beneath Gran Canaria. The shift in isotopic composition with increasing SiO2-saturation in the basalts and degree of differentiation for all volcanics is interpreted to reflect assimilation of enriched mantle (EM1 and EM2) in the lithosphere beneath Gran Canaria. This enriched mantle may have been derived from the continental lithospheric mantle beneath the West African Craton by thermal erosion or delamination during rifting of Pangaea. This study suggests that the enriched mantle components (EM1 and EM2) may be stored in the shallow mantle, whereas the HIMU component may have a deeper origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we present the first radiometric age data and a comprehensive geochemical data set (including major and trace element and Sr-Nd-Pb-Hf isotope ratios) for samples from the Hikurangi Plateau basement and seamounts on and adjacent to the plateau obtained during the R/V Sonne 168 cruise, in addition to age and geochemical data from DSDP Site 317 on the Manihiki Plateau. The 40Ar/39Ar age and geochemical data show that the Hikurangi basement lavas (118-96 Ma) have surprisingly similar major and trace element and isotopic characteristics to the Ontong Java Plateau lavas (ca. 120 and 90 Ma), primarily the Kwaimbaita-type composition, whereas the Manihiki DSDP Site 317 lavas (117 Ma) have similar compositions to the Singgalo lavas on the Ontong Java Plateau. Alkalic, incompatible-element-enriched seamount lavas (99-87 Ma and 67 Ma) on the Hikurangi Plateau and adjacent to it (Kiore Seamount), however, were derived from a distinct high time-integrated U/Pb (HIMU)-type mantle source. The seamount lavas are similar in composition to similar-aged alkalic volcanism on New Zealand, indicating a second wide-spread event from a distinct source beginning ca. 20 Ma after the plateau-forming event. Tholeiitic lavas from two Osbourn seamounts on the abyssal plain adjacent to the northeast Hikurangi Plateau margin have extremely depleted incompatible element compositions, but incompatible element characteristics similar to the Hikurangi and Ontong Java Plateau lavas and enriched isotopic compositions intermediate between normal mid-ocean-ridge basalt (N-MORB) and the plateau basement. These younger (~52 Ma) seamounts may have formed through remelting of mafic cumulate rocks associated with the plateau formation. The similarity in age and geochemistry of the Hikurangi, Ontong Java and Manihiki Plateaus suggest derivation from a common mantle source. We propose that the Greater Ontong Java Event, during which ?1% of the Earth's surface was covered with volcanism, resulted from a thermo-chemical superplume/dome that stalled at the transition zone, similar to but larger than the structure imaged presently beneath the South Pacific superswell. The later alkalic volcanism on the Hikurangi Plateau and the Zealandia micro-continent may have been part of a second large-scale volcanic event that may have also triggered the final breakup stage of Gondwana, which resulted in the separation of Zealandia fragments from West Antarctica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a part of the Russian-German project "Siberian River-Runoff (SIRRO)" the major element composition of the dissolved load and the major and trace element composition of particulate load and bottom sediment of the Yenisei River and Estuary were analyzed and examined in context of the basin lithology and climate. In addition, the processes controlling the transformation of the river load in the estuarine mixing zone were investigated. The chemical composition of the dissolved and particulate load of the Yenisei fluvial endmember is generally comparable to that of other major world rivers. The dissolved load is chiefly controlled by carbonate weathering and the chemical composition of the river suspended particulate matter (SPM) is similar to that of the North American Shale Composite (NASC), which represents the weathering product of the upper continental crust. The Chemical Index of Alteration (CIA) of the Yenisei SPM amounts to 71, which indicates moderate chemical weathering. With regard to the SPM geochemistry, the Yenisei occupies an intermediate position between the adjacent rivers Khatanga and the Lena. Drastic changes in the composition of the river load are seen in the mixing zone between fresh and salt water. While dissolved Na, Ca, Mg, K, CI, S04, F, Br, Sr and HC03 behave conservatively, dissolved Fe is completely removed from solution at very low salinities. Particulate Mn exhibits a pronounced mid-salinity minimum concomitant with a maximum of dissolved Mn, which is probably related to suboxic conditions in the area of the so-called "marginal filter", where highest turbidities are found. The Mn-minimum in SPM is paralleled by depletions of the elements Ba, Zn, Cd, Ni, Cu and V, which can be associated with manganese particles. The estuarine bottom sediments are composed of mud and sand and the sedimentological parameters of the bottom sediments have to be considered for the interpretation of the bulk geochemical data. The chemical composition of the mud is comparable to the SPM, whereas the sand is relatively enriched in Si/Al, Ba/Al, Zr/Al and Sr/Al ratios and depleted in transition metals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geophysical surveys of the Mariana forearc, in an area equidistant from the Mariana Trench and the active Mariana Island Arc, revealed a 40-m-deep graben about 13 km northwest of Conical Seamount, a serpentine mud volcano. The graben and its bounding horst blocks are part of a fault zone that strikes northwest-southeast beneath Conical Seamount. One horst block was drilled during Leg 125 of the Ocean Drilling Program (Site 781). Three lithologic units were recovered at Site 781: an upper sedimentary unit, a middle basalt unit, and a lower sedimentary unit. The upper unit, between 0 and 72 mbsf, consists of upper Pliocene to Holocene diatomaceous and radiolarian-bearing silty clay that grades down into vitric silty clay and vitric clayey silt. The middle unit is a Pleistocene vesicular, porphyritic basalt, the top of which corresponds to a high-amplitude reflection on the reflection profiles. The lower unit is a middle to upper (and possibly some lower) Pliocene vitric silty clay and vitric clayey silt similar to the lower part of the upper unit. The thickness of the basalt unit can only be estimated to be between 13 and 25 m because of poor core recovery (28% to 55%). The absence of internal flow structures and the presence of an upper glassy chilled zone and a lower, fine-grained margin suggest that the basalt unit is either a single lava flow or a near-surface sill. The basalt consists of plagioclase phenocrysts with subordinate augite and olivine phenocrysts and of plagioclase-augite-olivine glomerocrysts in a groundmass of plagioclase, augite, olivine, and glass. The basalt is an island arc tholeiite enriched in large-ion-lithophile elements relative to high-field-strength elements, similar to the submarine lavas of the southern arc seamounts. In contrast, volcanic rocks from the active volcanoes on Pagan and Agrigan islands, 100 km to the west of the drill site, are calc-alkaline. The basalt layer, the youngest in-situ igneous layer reported from the Izu-Bonin and Mariana forearcs, is enigmatic because of its location more than 100 km from the active volcanic arc. The sediment layers above and below the basalt unit are late Pliocene in age (about 2.5 Ma) and normally magnetized. The basalt has schlierenlike structures, reverse magnetization, and a K-Ar age of 1.68±0.37 Ma. Thus, the basalt layer is probably a sill fed by magma intruded along a fault zone bounding the horst and graben in the forearc. The geochemistry of the basalt is consistent with a magma source similar to that of the active island arc and from a mantle source above the subducting Pacific plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 50 km-long West Valley segment of the northern Juan de Fuca Ridge is a young, extension-dominated spreading centre, with volcanic activity concentrated in its southern half. A suite of basalts dredged from the West Valley floor, the adjacent Heck Seamount chain, and a small near-axis cone here named Southwest Seamount, includes a spectrum of geochemical compositions ranging from highly depleted normal (N-) MORB to enriched (E-) MORB. Heck Seamount lavas have chondrite-normalized La/Sm en -0.3, 87Sr/86Sr = 0.70235 - 0.70242, and 206Pb/204Pb = 18.22 - 18.44, requiring a source which is highly depleted in trace elements both at the time of melt generation and over geologic time. The E-MORB from Southwest Seamount have La/Sm en -1.8, 87Sr/86Sr = 0.70245 - 0.70260, and 206Pb/204Pb = 18.73 - 19.15, indicating a more enriched source. Basalts from the West Valley floor have chemical compositions intermediate between these two end-members. As a group, West Valley basalts from a two-component mixing array in element-element and element-isotope plots which is best explained by magma mixing. Evidence for crustal-level magma mixing in some basalts includes mineral-melt chemical and isotopic disequilibrium, but mixing of melts at depth (within the mantle) may also occur. The mantle beneath the northern Juan de Fuca Ridge is modelled as a plum-pudding, with "plums" of enriched, amphibole-bearing peridotite floating in a depleted matrix (DM). Low degrees of melting preferentially melt the "plums", initially removing only the amphibole component and producing alkaline to transitional E-MORB. Higher degrees of melting tap both the "plums" and the depleted matrix to yield N-MORB. The subtly different isotopic compositions of the E-MORBs compared to the N-MORBs require that any enriched component in the upper mantle was derived from a depleted source. If the enriched component crystallized from fluids with a DM source, the "plums" could evolve to their more evolved isotopic composition after a period of 1.5-2.0 Ga. Alternatively, the enriched component could have formed recently from fluids with a lessdepleted source than DM, such as subducted oceanic crust. A third possibility is that enriched material might be dispersed as "plums" throughout the upper mantle, transported from depth by mantle plumes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 125 recovered serpentined harzburgites and dunites from a total of jive sites on the crests and flanks of two serpen finite seamounts, Conical Seamount in the Mariana forearc and Torishima Forearc Seamount in the Izu-Bonin forearc. These are some of the first extant forearc peridotites reported in the literature and they provide a window into oceanic, supra-subduction zone (SSZ) mantle processes. Harzbutrgites from both seamounts are very refractory with low modal clinopyroxene (<4%), chrome-rich spinels (cx-number = 0.40-0.80), very low incompatible element contents, and (with the exception of amphibole-bearing samples) U-shaped rare earth element (REE) profiles with positive Eu anomalies. Both sets of peridotites have olivine-spinel equilibration temperatures that are low compared with abyssal peridotites, possibly because of water-assisted diffusional equilibration in the SSZ environment However, other features indicate that the harzburgites from the two seamounts have very different origins. Harzburgites from Conical Seamount are characterized by calculated oxygen fugacities between FMQ (fayalite- magnetite- quartz) - 1.1 (log units) and FMQ + 0.4 which overlap those of mid-ocean ridge basalt (MORB) peridotites. Dunites from Conical Seamotmt contain small amounts of clinopyroxene, orthopyroxene and amphibole and are light REE (LREE) enriched. Moreover; they are considerably more oxidized than the harzburgites to which they are spatially related, with calculated oxygen fugacities of FMQ -0.2 toFMQ + 1.2. Using textural and geochemical evidence, we interpret these harzburgites as residual MORB mantle (from 15 to 20 % fractional melting) which has subsequently been modified by interaction with boninitic melt ivithin the mantle wedge, and these dunites as zones of focusing of this melt in which pyroxene has preferentially been dissolved from the harzbutgite protolith. In contrast, harzburgites from Torishima Forearc Seamount give calculated oxygen fugacities between FMQ + 0.8 and FMQ + l.6, similar to those calculated for other subduction-zone related peridotites and similar to those calculated for the dunites (FMQ + 1.2 to FMQ + 1.8) from the same seamount. In this case, we interpret both the harzburgites and dunites as linked to mantle melting (20-25 % fractional melting) in a supra-subduction zone environment The results thus indicate that the forearc is underlain by at least two types of mantle lithosphere, one being trapped or accreted oceanic lithosphere, the other being lithosphere formed by subduction-related melting. They also demonstrate that both types of mantle lithosphere may have undergone extensive interaction with subduction-derived magmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fate of subducted sediment and the extent to which it is dehydrated and/or melted before incorporation into arc lavas has profound implications for the thermo-mechanical nature of the mantle wedge and models for crustal evolution. In order to address these issues, we have undertaken the first measurements of 10Be and light elements in lavas from the Tonga-Kermadec arc and the sediment profile at DSDP site 204 outboard of the trench. The 10Be/9Be ratios in the Tonga lavas are lower than predicted from flux models but can be explained if (a) previously estimated sediment contributions are too high by a factor of 2-10, (b) the top 1-22 m of the incoming sediment is accreted, (c) large amounts of sediment erosion are proposed, or (d) the sediment component takes several Myr longer than the subducting plate to reach the magma source region beneath Tonga. The lavas form negative Th/Be-Li/Be arrays that extend from a depleted mantle source composition to lower Th/Be and Li/Be ratios than that of the bulk sediment. Thus, these arrays are not easily explained by bulk sediment addition and, using partition coefficients derived from experiments on the in-coming sediment, we show that they are also unlikely to result from fluid released during dehydration of the sediment (or altered oceanic crust). However, partial melts of the dehydrated sediment residue formed at ~800 °C during the breakdown of amphibole +/- plagioclase and in the absence of cordierite have significantly lowered Th/Be ratios. The lava arrays can be successfully modelled as 10-15% partial melts of depleted mantle after it has been enriched by the addition of 0.2-2% of these partial melts. Phase relations suggest that this requires that the top of the subducting crust reaches temperatures of ~800 °C by the time it attains ~ 80 km depth which is in excellent agreement with the results of recent numerical models incorporating a temperature-dependent mantle viscosity. Under these conditions the wet basalt solidus is also crossed yet there is no recognisable eclogitic signal in the lavas suggesting that on-going dehydration or strong thermal gradients in the upper part of the subducting plate inhibit partialmelting of the altered oceanic crust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The "Ko'olau" component of the Hawaiian mantle plume represents an extreme (EM1-type) end member of Hawaiian shield lavas in radiogenic isotope space, and was defined on the basis of the composition of subaerial lavas exposed in the Makapu'u section of Ko'olau Volcano. The 679 m-deep Ko'olau Scientific Drilling Project (KSDP) allows the long-term evolution of Ko'olau Volcano to be reconstructed and the longevity of the "Ko'olau" component in the Hawaiian plume to be tested. Here, we report triple spike Pb isotope and Sr and Nd isotope data on KSDP core samples, and rejuvenation stage Honolulu Volcanics (HV) (together spanning ~2.8 m.y.), and from ~110 Ma basalts from ODP Site 843, thought to be representative of the Pacific lithosphere under Hawai'i. Despite overlapping ranges in Pb isotope ratios, KSDP and HV lavas form two distinct linear arrays in 208Pb/204Pb-206Pb/204Pb isotope space. These arrays intersect at the radiogenic end indicating they share a common component. This "Kalihi" component has more radiogenic Pb, Nd, Hf, but less radiogenic Sr isotope ratios than the "Makapu'u" component. The mixing proportions of these two components in the lavas oscillated through time with a net increase in the "Makapu'u" component upsection. Thus, the "Makapu'u" enriched component is a long-lived feature of the Hawaiian plume, since it is present in the main shield-building stage KSDP lavas. We interpret the changes in mixing proportions of the Makapu'u and Kalihi components as related to changes in both the extent of melting as well as the lithology (eclogite vs. peridotite) of the material melting as the volcano moves away from the plume center. The long-term Nd isotope trend and short-term Pb isotope fluctuations seen in the KSDP record cannot be ascribed to a radial zonation of the Hawaiian plume: rather, they reflect the short length-scale heterogeneities in the Hawaiian mantle plume. Linear Pb isotope regressions through the HV, recent East Pacific Rise MORB and ODP Site 843 datasets are clearly distinct, implying that no simple genetic relationship exists between the HV and the Pacific lithosphere. This observation provides strong evidence against generation of HV as melts derived from the Pacific lithosphere, whether this be recent or old (100 Ma). The depleted component present in the HV is unlike any MORB-type mantle and most likely represents material thermally entrained by the upwelling Hawaiian plume and sampled only during the rejuvenated stage. The "Kalihi" component is predominant in the main shield building stage lavas but is also present in the rejuvenated HV. Thus this material is sampled throughout the evolution of the volcano as it moves from the center (main shield-building stage) to the periphery (rejuvenated stage) of the plume. The presence of a plume-derived material in the rejuvenated stage has significant implications for Hawaiian mantle plume melting models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concentrations and activity ratios of uranium and thorium isotopes (234U/238U, 230Th/232Th) were determined at about 5-m intervals through the composite top 22-m sequence of Ocean Drilling Program (ODP) Hole 645 in Baffin Bay and, in the Labrador Sea, at 1-m intervals through the top 11 m of Core 84-030-003 (TWC and P) collected by the Hudson during a preliminary survey of Site 647, and also at about 2-m intervals through the composite top 22-m sequence of Hole 646. In the Labrador Sea, surficial sediments show unsupported 230Th having a 230Th/234U activity ratio of about 3. At Site 647, a regular decrease in the 230Th/232Th activity ratio was observed downcore from about 1.2 (at 1 mbsf) to about 0.4 (at ~8 mbsf), through a sequence spanning over 18O stages 2 through 8. The correlative thorium/uranium chronology and 18O stratigraphy indicate relatively constant sedimentation rates throughout the sequence. At Site 646, down Greenland slope, and at Site 645, in Baffin Bay, highly variable uranium and thorium concentrations and isotopic ratios were observed in relation to highly variable sedimentation rates. As a whole, the lower-excess observed in Baffin Bay records is indicative of very high absolute sedimentation rates in comparison with those of the Labrador Sea. These rates are confirmed by the 18O-stratigraphy and a few AMS 14C controls on handpicked foraminifers. At both Labrador Sea sites, a clear indication of an initial 230Th-excess (over the 230Th-rain from the water column) was found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present new major and trace element and O-Sr-Nd-isotope data for igneous rocks from the western Mediterranean Alborán Sea, collected during the METEOR 51/1 cruise, and for high-grade schists and gneisses from the continental Alborán basement, drilled during the Ocean Drilling Programme (ODP Leg 161, Site 976). The geochemical data allow a detailed examination of crustal and mantle processes involved in the petrogenesis of the lavas and for the first time reveal a zonation of the Miocene Alborán Sea volcanism: (1) a keel-shaped area of LREE-depleted (mainly tholeiitic series) lavas in the central Alborán Sea, generated by high degrees of partial melting of a depleted mantle source and involving hydrous fluids from subducted marine sediments, that is surrounded by (2) a horseshoe-shaped zone with LREE-enriched (mainly calc-alkaline series) lavas subparallel to the arcuate Betic-Gibraltar-Rif mountain belt. We propose that the geochemical zonation of the Miocene Alborán Basin volcanism results from eastward subduction of Tethys oceanic lithosphere coupled with increasing lithospheric thickness between the central Alborán Sea and the continental margins of Iberia and Africa.