865 resultados para Dynamic Contact Angle
Resumo:
The characteristics of tissue conditioners support microorganism development that can threaten the health of the dentures user. The object of this study was to evaluate the effect on antimicrobial activity, roughness and wettability surface of a tissue conditioners material combined with the antimicrobial polymer poly (2-tert-butilaminoethyl) methacrylate (PTBAEMA). Specimens of tissue conditioner (Coe Soft(®)) were divided into three groups, according to the concentration of PTBAEMA incorporated (0, 10 and 25%). Antimicrobial activity was assessed by adherence assay of one of the microorganisms, Staphylococcus aureus, Streptococcus mutans and Candida albicans. Roughness measurements were made using a Mitutoyo SJ-400, and the mean arithmetic roughness values (Ra) obtained were used for the comparisons. The wettability properties were determined by contact angle measurements. The group containing 25% of PTBAEMA inhibited totally the S. aureus and S. mutans biofilm formation. A significant reduc tion in the S. aureus (Kruskal-Wallis, p = 0,001) and S. mutans (Kruscal-Wallis, p = 0,001) count for 10% PTBAEMA group compared with respective control group. No significant difference was found for C. albicans among PTBAEMA groups and control group (ANOVA, p > 0,05). Incorporating 10 and 25% PTBAEMA increased surface roughness and decreased contact angles (ANOVA and Tukey's post hoc tests, α = 5%). Incorporating 10% PTBAEMA into tissue conditioner increases wettability and roughness of tissue conditioner surface; and decreases the adhesion of S. mutans and S. aureus on material surface, but did not exhibit antimicrobial effect against C. albicans. The PTBAEMA incorporated into tissue conditioner could prevent biofilm formation on elderly patient.
Resumo:
The surface free energy of conditioned-dentin is one of the factors that interfere with monomeric infiltration of the interfibrillar spaces. Saturation of the tooth matrix with different substances may modulate this energy and, consequently, the wettability of the dentin. To evaluate the influence of different substances used to saturate conditioned-dentin on surface free energy (SFE) of this substrate. Dentin blocks (4 × 7 × 1 mm, n = 6/ group), obtained from the roots of bovine incisors, were etched using phosphoric acid for 15 seconds, rinsed and gently dried. The surfaces were treated for 60 seconds with: ultra-purified water (H20-control); ethanol (EtOH), acetone (ACT), chlorhexidine (CHX), ethylenediaminetetraacetic acid (EDTA); or sodium hypochlorite (NaOCl). The tooth surfaces were once again dried with absorbent paper and prepared for SFE evaluation using three standards: water, formamide and bromonaphthalene. Analysis of variance (ANOVA) and Dunnet's tests (a = 0.05) were applied to the data. Ethylenediaminetetraacetic acid was the only substance that caused a change to the contact angle for the standards water and formamide, while only EtOH influenced the angles formed between formamide and the dentin surface. None of the substances exerted a significant effect for bromonaphtha-lene. In comparison to the control, only EDTA and NaOCl altered both polar components of the SFE. Total SFE was increased by saturation of the collagen matrix by EDTA and reduced when NaOCl was used. Saturation of the collagen matrix by EDTA and EtOH changed the surface free energy of the dentin. In addition, the use of NaOCl negatively interfered with the properties evaluated. The increase of surface free energy and wettability of the dentin surface would allow higher penetration of the the adhesive system, which would be of importance to the clinical success of resin-dentin union.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Risk of mechanical injuries contraindicate brushing and elect chemical agents as appropriate for daily cleaning of dentures relined with resilient materials. It was evaluated the effect of denture cleansers on the wettability of denture relining material (Dentusoft, Dental Medrano). We used 20 discs of acrylic resin thermoactivated VipiCril ® with 30mm diameter and 4mm thick, covered by 2mm Dentusoft ®. Divided into 4grupos were stored in artificial saliva at 37 +1 º C for 30 days, immersed daily for 15minutes in distilled water (GI), Corega ® Tabs (GII), a solution of sodium bicarbonate (GIII) or solution of sodium hypochlorite (GIV) after which, on the soft liner were poured 2 ml of type IV gypsum (Durone IV, Dentsply). Reached the final setting of the gypsum specimens were sectioned vertically and medially, settled water with sandpaper No. 400 and mounted on suitable device for reading (in the right and left) of the contact angle Carl Zeiss microscope (precision, 001). The results were submitted to analysis, showed non-normal distribution, opting for non-parametric test. Kruskal Wallis test performed at 5% significance, there was statistical difference between the groups with lower average contact angle for GII. It was concluded that the chemical cleaning Corega Tabs ® allowed a better adaptation of relining the gypsum studied.
Resumo:
The dental trade has offered dental impression and dental stone for orthodontic use ensuring accurate models. The compatibility between these materials is defined by the wetting of the model surfaces by the mixture water/stone poured over it and the influenced by the method of disinfection of model and disinfectant solution used. It was evaluated the influence of spray disinfection with sodium hypochlorite 1% on the wettability of two commercial alginate (Jeltrate ® - Dentsply and Orthoprint ® - Zhermack) at two commercial type III gypsum (Rio ® - ME and AOBussoli Orthogesso Orthogesso ®-SA). Twenty models were fabricated for each type of alginate, which were divided into two groups (water and sodium hypochlorite), receiving respectively water and sodium hypochlorite 1% spray. Each group of models was then further divided into two subgroups, and on their surface were poured 2 ml of type III gypsum (Gesso Rio® or Orthogesso®). Reached the final setting of the gypsum specimens were sectioned vertically and medially, settled water with sandpaper No. 400 and mounted on suitable device for reading (in the right and left) of the contact angle Carl Zeiss microscope (precision, 001). The results were submitted to ANOVA and founded statistical significance for solutions used. It was concluded that sodium hypochlorite spray improved wettability of alginates studied.
Resumo:
The cares at the manipulation of the alginate (condensation, disinfection of the impression and the time elapsed until the leak of the plaster) deserve special attention considering the great amount of distortions occurring every time the impression is not fill of plaster in a brief space of time and appropriate storage conditions. Besides its adaptation to the plaster suffers influence of the events happened after the impression is removed of the mouth. The purpose of this research was to evaluate the wetting capacity of three brands of alginate (Jeltrate™,Hydrogum™ e Orthoprint™) by the plaster type III (Rio™) under the influence of disinfection by sodium hypochlorite 1% sprays and the time of storage of 15 minutes,30 minutes, 1 hour, 6, 12 and 24 hours. There were made 60 impressions of each brand of alginate divided in two groups (water and sodium hypochlorite 1%) rearranged after the application of the sodium hypochlorite spray according to the storage time (15 or 30 minutes and 1,6,12, or 24 hours). On the surface of the impressions 2ml of plaster were flowed, proportioned and condensed in agreement with manufacturer‘s instructions. After the final setting expansion the casts were sectioned vertically and medially, regularized at the cut surface (emery paper 400) and setted for reading the contact angle at the microscope Carl Zeiss. The obtained results, submitted to statistical treatment (ANOVA) revealed significant differences when compared the employed solutions (water and sodium hypochlorite 1%) and the time of storage. The sodium hypochlorite 1% exhibited the smallest contact angles and the times of storage of 15 minutes and 6 hours the smallest and larger angles, respectively. It can be concluded that the alginate impressions exhibited larger adaptation to the plaster when disinfected by hypochlorite of sodium 1% and stocked by 15 minutes.
Resumo:
Nanotubes have been subject of studies with regard to their ability to promote differentiation of several cells lines. Nanotubes have been used to increase the roughness of the implant surfaces and to improve bone tissue integration on dental implant. In this study TiO2 nanotube layer prepared by anodic oxidation was evaluated. Nanotube formation was carried out using Glycerol-H2O DI(50-50 v/v)+NH4F(0,5 a 1,5% and 10-30V) for 1-3 hours at 37ºC. After nanostructure formation the topography of surface was observed using field-emission-scanning-microscope (FE-SEM). Contact angle was evaluated on the anodized and non-anodized surfaces using a water contact angle goniometer in sessile drop mode with 5 μL drops. In the case of nanotube formation and no treatment surface were presented 39,1° and 75,9°, respectively. The contact angle describing the wettability of the surface is enhanced, more hydrophilic, on the nanotube surfaces, which can be advantageous for enhancing protein adsorption and cell adhesion.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
The purpose of this work is the deposition of films in order to increase the corrosion resistance of AISI 304 steel, which is a material used to construct the reactors for bioethanol production. This deposition inhibits the permeation of corrosive species to the film-metal interface. Thin films were prepared by radio-frequency plasma enhanced chemical vapor deposition (RF-PECVD) method using plasmas of hexamethyldisiloxane/argon/oxygen mixtures excited by signals of different powers. The plasma was generated by the application of RF power of 13.56 MHz to the sample holder while keeping grounded the topmost electrode and the chamber walls. The effect of the RF power on the properties of the samples was investigated by perfilometry, X-ray photoelectron spectroscopy (XPS), contact angle, and electrochemical impedance spectroscopy (EIS). The results of the corrosion resistance tests of the AISI 304 steel were interpreted in terms of the energy delivered to the growing layer by plasma excitation power.
Resumo:
Purpose: In the present work, a susceptibility and efficacy of the Ti–7.5Mo alloy and Ti alloy to bacterial biofilm formation after surface treatment was evaluated. Methods and materials: The alloy Ti–7.5Mo was obtained in arc furnace under an argon atmosphere. Ingots were then homogenized under vacuum at 1100 °C for 86.4 ks to eliminate chemical segregation and after cold worked discs were cutting. Samples were immersed in NaOH aqueous solution (5 M) and treated at 450 °C. Biofilms were grown in Ti–7.5Mo discs immersed in sterile brain heart infusion broth (BHI)containing 5% sucrose, inoculated with microbial suspension (106 cells/ml) and incubated for 5 days. Next, the discs were placed in tubes with sterile physiological solution 0.9% sodium chloride (NaCl) and sonicated for to disperse the biofilms. Tenfold serial dilutions were carried and aliquots seeded in selective agar, which were then incubated for 48 h. Then, the numbers CFU/ml (log 10) were counted and analyzed statistically. Scanning electron microscopy (SEM) on discs with biofilms groups was performed, atomic force microscope (AFM) and contact angle. Results: The results show that there is a 5% difference in bacterial adhesion between pure titanium and Ti–7.5Mo alloy. Conclusion: It was concluded that the greater the roughness, the greater the hydrophilic effect.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)