814 resultados para Doughty, Glenn
Resumo:
Bioresorbable polymers such as polylactide (PIA) and polylactide-co-glycolide (PLGA) have been used successfully as biomaterials in a wide range of medical applications. However, their slow degradation rates and propensity to lose strength before mass have caused problems. A central challenge for the development of these materials is the assurance of consistent and predictable in vivo degradation. Previous work has illustrated the potential to influence polymer degradation using electron beam (e-beam) radiation. The work addressed in this paper investigates further the utilisation of e-beam radiation in order to achieve a more surface specific effect. Variation of e-beam energy was studied as a means to control the effective penetrative depth in poly-L-lactide (PLEA). PLEA samples were exposed to e-beam radiation at individual energies of 0.5 MeV, 0.75 MeV and 1.5 MeV. The near-surface region of the PLEA samples was shown to be affected by e-beam irradiation with induced changes in molecular weight, morphology, flexural strength and degradation profile. Moreover, the depth to which the physical properties of the polymer were affected is dependent on the beam energy used. Computer modelling of the transmission of each e-beam energy level used corresponded well with these findings. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The objectives of this study were to develop a three-dimensional acellular cartilage matrix (ACM) and investigate its possibility for use as a scaffold in cartilage tissue engineering. Bovine articular cartilage was decellularized sequentially with trypsin, nuclease solution, hypotonic buffer, and Triton x 100 solution; molded with freeze-drying process; and cross-linked by ultraviolet irradiation. Histological and biochemical analysis showed that the ACM was devoid of cells and still maintained the collagen and glycosaminoglycan components of cartilage. Scanning electronic microscopy and mercury intrusion porosimetry showed that the ACM had a sponge-like structure of high porosity. The ACM scaffold had good biocompatibility with cultured rabbit bone marrow mesenchymal stem cells with no indication of cytotoxicity both in contact and in extraction assays. The cartilage defects repair in rabbit knees with the mesenchymal stem cell-ACM constructs had a significant improvement of histological scores when compared to the control groups at 6 and 12 weeks. In summary, the ACM possessed the characteristics that afford it as a potential scaffold for cartilage tissue engineering.
Resumo:
We aimed to develop a clinically relevant delayed union/non-union fracture model to evaluate a cell therapy intervention repair strategy. Histology, three-dimensional (3D) micro-computed tomography (micro-CT) imaging and mechanical testing were utilized to develop an analytical protocol for qualitative and quantitative assessment of fracture repair. An open femoral diaphyseal osteotomy, combined with periosteal diathermy and endosteal excision, was held in compression by a four pin unilateral external fixator. Three delayed union/non-union fracture groups established at 6 weeks-(a) a control group, (b) a cell therapy group, and (c) a group receiving phosphate-buffered saline (PBS) injection alone-were examined subsequently at 8 and 14 weeks. The histological response was combined fibrous and cartilaginous non-unions in groups A and B with fibrous non-unions in group C. Mineralized callus volume/total volume percentage showed no statistically significant differences between groups. Endosteal calcified tissue volume/endosteal tissue volume, at the center of the fracture site, displayed statistically significant differences between 8 and 14 weeks for cell and PBS intervention groups but not for the control group. The percentage load to failure was significantly lower in the control and cell treatment groups than in the PBS alone group. High-resolution micro-CT imaging provides a powerful tool to augment characterization of repair in delayed union/non-union fractures together with outcomes such as histology and mechanical strength measurement. Accurate, nondestructive, 3D identification of mineralization progression in repairing fractures is enabled in the presence or absence of intervention strategies. (c) 2007 Orthopaedic Research Society.
Resumo:
Gold nanoparticles (GNPs) are being proposed as contrast agents to enhance X-ray imaging and radiotherapy, seeking to take advantage of the increased X-ray absorption of gold compared to soft tissue. However, there is a great discrepancy between physically predicted increases in X-ray energy deposition and experimentally observed increases in cell killing. In this work, we present the first calculations which take into account the structure of energy deposition in the nanoscale vicinity of GNPs and relate this to biological outcomes, and show for the first time good agreement with experimentally observed cell killing by the combination of X-rays and GNPs. These results are not only relevant to radiotherapy, but also have implications for applications of heavy atom nanoparticles in biological settings or where human exposure is possible because the localised energy deposition high-lighted by these results may cause complex DNA damage, leading to mutation and carcinogenesis.
Resumo:
Triphenylmethanes - Malachite Green (MG), Crystal Violet (CV) and Brilliant Green (BC) are dyes with known genotoxic and carcinogenic properties. Apart from being illegally used in aquaculture for treatment of fish diseases they are also applied in industry such as paper production to colour paper towels widely used in hospitals, factories and other locations for hand drying after washing. The present study provides evidence that the triphenylmethane dye (BC) present in green paper towels can migrate through the skin even when the exposure time is short (30-300 s). The transfer of the dye from the towel to food (fish) was also studied and a high amount of colour was found to migrate during overnight exposure. The risk to humans associated with these two dye transfer studies was assessed using a 'margin of exposure approach' on the basis of the toxicological data available for the closely related dye MG and its metabolite Leucomalachite Green. The data indicated that the risk associated with the use of triphenylmethane containing paper towels is of a similar proportion to the risk associated with consumption of fish contaminated with these dyes due to the illegal application in aquaculture. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background and purpose: The addition of gold nanoparticles (GNPs) to tumours leads to an increase in dose due to their high density and energy absorption coefficient, making it a potential radiosensitiser. However, experiments have observed radiosensitisations significantly larger than the increase in dose alone, including at megavoltage energies where gold's relative energy absorption is lowest. This work investigates whether GNPs create dose inhomogeneities on a sub-cellular scale which combine with non-linear dose dependence of cell survival to be the source of radiosensitisation at megavoltage energies.
Resumo:
Purpose The retinal pigment epithelium (RPE) and underlying Bruch’s membrane undergo significant modulation during ageing. Progressive, age-related modifications of lipids and proteins by advanced glycation end products (AGEs) at this cell–substrate interface have been implicated in RPE dysfunction and the progression to age-related macular degeneration (AMD). The pathogenic nature of these adducts in Bruch’s membrane and their influence on the overlying RPE remains unclear. This study aimed to identify alterations in RPE protein expression in cells exposed to AGE-modified basement membrane (AGE-BM), to determine how this “aged” substrate impacts RPE function and to map the localisation of identified proteins in ageing retina. Methods Confluent ARPE-19 monolayers were cultured on AGE-BM and native, non-modified BM (BM). Following 28-day incubation, the proteome was profiled using 2-dimensional gel electrophoresis (2D), densitometry and image analysis was employed to map proteins of interest that were identified by electrospray ionisation mass spectrometry (ESI MS/MS). Immunocytochemistry was employed to localise identified proteins in ARPE-19 monolayers cultured on unmodified and AGE-BM and to analyze aged human retina. Results Image analysis detected altered protein spot densities between treatment groups, and proteins of interest were identified by LC ESI MS/MS which included heat-shock proteins, cytoskeletal and metabolic regulators. Immunocytochemistry revealed deubiquitinating enzyme ubiquitin carboxyterminal hydrolase-1 (UCH-L1), which was upregulated in AGE-exposed RPE and was also localised to RPE in human retinal sections. Conclusions This study has demonstrated that AGE-modification of basement membrane alters the RPE proteome. Many proteins are changed in this ageing model, including UCHL-1, which could impact upon RPE degradative capacity. Accumulation of AGEs at Bruch”s membrane could play a significant role in age-related dysfunction of the RPE.
Resumo:
Transcriptionally erythropoietin (Epo) synthesis is tightly regulated by the hypoxia inducible factor (HIF), which is composed of one alpha and one beta subunit that are constitutively expressed. The beta subunit is non-variable, but three different alpha subunits give rise to three isoforms of HIF. The alpha subunit is proteasomally regulated in the presence of oxygen by hydroxylation of the proline in the LXXLAP motif of the oxygen dependent degradation (ODD) domain of HIFalpha, catalysed by members of the prolyl hydroxylase domain (PHD) family of enzymes. This allows the von Hippel Lindau (VHL) protein to associate with the alpha subunit, which is subsequently tagged with ubiquitin and degraded by the proteasome. Any defect in the oxygen sensing pathway that allows the alpha subunit to escape proteasomal regulation leads to elevated expression of HIF target genes.
Recently mutations in both VHL and PHD2 have been identified in a cohort of patients with erythrocytosis, but no mutations were found in the ODD domain of HIF1alpha. Instead, investigation of the homologous region in HIF-2alpha revealed four different mutations, Pro534Leu, Met535Val, Gly537Arg and Gly537Trp in seven individuals/families. Affected individuals presented at a young age with elevated serum Epo. Several individuals have a clinical history of thrombosis, but no evidence of a von Hippel Lindau-like syndrome.
To define how the four mutations relate to the erythrocytosis phenotype functional assays were performed in vitro. Binding of PHD2 to the four HIF-2alpha mutants was impaired to varying degrees, with both the Gly537 mutants showing the greatest reduction. The association of VHL with the hydroxylated Met535Val mutant peptide was similar to wild type HIF- 2alpha, but was decreased in the other three HIF-2alpha mutants. Expression of three HIF- 2alpha target genes, adrenomedullin, NDRG1 and VEGF, was significantly up-regulated in cells stably transfected with the mutants under normoxia compared to wild type HIF-2alpha. Mutations in the ODD domain of HIF-2alpha disrupt proteasomal regulation by reducing the association with PHD2 and hence hydroxylation. Furthermore the binding of VHL is also impaired, even when HIF-2alpha is hydroxylated. Examination of the three-dimensional structure of hydroxylated HIF-1alpha bound to VHL confirms that amino acids close to site of hydroxylation (Pro-531 in isoform 2) are important for this association. These observations, together with recent studies utilising murine models of erythrocytosis, support the PHD2-HIF-2alpha-VHL axis as the major regulator of erythropoietin.
Resumo:
Background: This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.9 nm gold nanoparticles, the current study also draws on comparisons between nanoparticle size and total nanoparticle uptake based on previously published data.
Methods: We quantified gold nanoparticle uptake using atomic emission spectroscopy and imaged intracellular localization by transmission electron microscopy. Cell growth delay and clonogenic assays were used to determine cytotoxicity and radiosensitization potential, respectively. Mechanistic data were obtained by Western blot, flow cytometry, and assays for reactive oxygen species.
Results: Gold nanoparticle uptake was preferentially observed in tumor cells, resulting in an increased expression of cleaved caspase proteins and an accumulation of cells in sub G1 phase. Despite this, gold nanoparticle cytotoxicity remained low, with immortalized normal cells exhibiting an LD50 concentration approximately 14 times higher than tumor cells. The surviving fraction for gold nanoparticle-treated cells at 3 Gy compared with that of untreated control cells indicated a strong dependence on cell type in respect to radiosensitization potential.
Conclusion: Gold nanoparticles were most avidly endocytosed and localized within cytoplasmic vesicles during the first 6 hours of exposure. The lack of significant cytotoxicity in the absence of radiation, and the generation of gold nanoparticle-induced reactive oxygen species provide a potential mechanism for previously reported radiosensitization at megavoltage energies.
Resumo:
Bioresorbable polymers have been widely investigated as materials exhibiting significant potential for successful application in the fields of tissue engineering and drug delivery. Further to the ability to control degradation, surface engineering of polymers has been highlighted as a key method central to their development. Previous work has demonstrated the ability of electron beam (e-beam) technology to control the degradation profiles and bioresorption of a number of commercially relevant bioresorbable polymers (poly-l-lactic acid (PLLA), Llactide/DL-lactide co-polymer (PLDL) and poly(lactic-co-glycolic acid (PLGA)). This work investigates the further potential of ebeam technology to impart added biofunctionality through the manipulation of polymer (PLLA) surface properties. PLLA samples were subjected to e-beam treatments in air, with varying beam energies and doses. Surface characterization was then performed using contact angle analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and atomic force microscopy. Results demonstrated a significant increase in surface wettability post e-beam treatment. In correlation with this, XPS data showed the introduction of oxygen-containing functional groups to the surface of PLLA. Raman spectroscopy indicated chain scission in the near surface region of PLLA (as predicted). However, e-beam effects on surface properties were not shown to be dependent on beam energy or dose. E-beam irradiation did not seem to affect the surface roughness of PLLA as a direct consequence of the treatment.