952 resultados para Données--Compression (Télécommunications)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To investigate whether intermittent pneumatic compression (IPC) augments skin blood flow through transient suspension of local vasoregulation, the veno-arteriolar response (VAR), in healthy controls and in patients with peripheral arterial disease (PAD). METHODS: Nineteen healthy limbs and twenty-two limbs with PAD were examined. To assess VAR, skin blood flow (SBF) was measured using laser Doppler fluxmetry in the horizontal and sitting positions and was defined as percentage change with postural alteration [(horizontal SBF--sitting SBF)/horizontal SBF x 100]. On IPC application to the foot, the calf, or both, SBF was measured with laser Doppler fluxmetry, the probe being attached to the pulp of the big toe. RESULTS: Baseline VAR was higher in the controls 63.8 +/- 6.4% than in patients with PAD (31.7 +/- 13.4%, P = .0162). In both groups SBF was significantly higher with IPC than at rest (P < .0001). A higher percentage increase with IPC was demonstrated in the controls (242 +/- 85% to 788 +/- 318%) than in subjects with PAD, for each one of the three different IPC modes investigated (98 +/- 33% to 275 +/- 72%) with IPC was demonstrated. The SBF enhancement with IPC correlated with VAR for all three compression modes (r = 0.58, P = .002 for calf compression, r = 0.65, P < .0001 for foot compression alone, and r = 0.64, P = .0002 for combined foot and calf compression). CONCLUSION: The integrity of the veno-arteriolar response correlates with the level of skin blood flow augmentation generated with intermittent pneumatic compression, indicating that this may be associated with a transient suspension of the autoregulatory vasoconstriction both in healthy controls and in patients with PAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the inherent limitations of DXA, assessment of the biomechanical properties of vertebral bodies relies increasingly on CT-based finite element (FE) models, but these often use simplistic material behaviour and/or single loading cases. In this study, we applied a novel constitutive law for bone elasticity, plasticity and damage to FE models created from coarsened pQCT images of human vertebrae, and compared vertebral stiffness, strength and damage accumulation for axial compression, anterior flexion and a combination of these two cases. FE axial stiffness and strength correlated with experiments and were linearly related to flexion properties. In all loading modes, damage localised preferentially in the trabecular compartment. Damage for the combined loading was higher than cumulated damage produced by individual compression and flexion. In conclusion, this FE method predicts stiffness and strength of vertebral bodies from CT images with clinical resolution and provides insight into damage accumulation in various loading modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ever since the invention of the internal combustion engine, generating more power and achieving better efficiency has been a major goal for the designers. Variable compression ratio technology is way to achieve those goals. This paper will discuss the method of varying the compression ratio of an inline 4-cylinder engine through the use of a 4-bar linkage and gear mechanism. This mechanism was proven to easily vary the compression ratio of the engine and shows promise of becoming a technology used for future engine designer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To analyze the impact of opacities in the optical pathway and image compression of 32-bit raw data to 8-bit jpg images on quantified optical coherence tomography (OCT) image analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need for a stronger and more durable building material is becoming more important as the structural engineering field expands and challenges the behavioral limits of current materials. One of the demands for stronger material is rooted in the effects that dynamic loading has on a structure. High strain rates on the order of 101 s-1 to 103 s-1, though a small part of the overall types of loading that occur anywhere between 10-8 s-1 to 104 s-1 and at any point in a structures life, have very important effects when considering dynamic loading on a structure. High strain rates such as these can cause the material and structure to behave differently than at slower strain rates, which necessitates the need for the testing of materials under such loading to understand its behavior. Ultra high performance concrete (UHPC), a relatively new material in the U.S. construction industry, exhibits many enhanced strength and durability properties compared to the standard normal strength concrete. However, the use of this material for high strain rate applications requires an understanding of UHPC’s dynamic properties under corresponding loads. One such dynamic property is the increase in compressive strength under high strain rate load conditions, quantified as the dynamic increase factor (DIF). This factor allows a designer to relate the dynamic compressive strength back to the static compressive strength, which generally is a well-established property. Previous research establishes the relationships for the concept of DIF in design. The generally accepted methodology for obtaining high strain rates to study the enhanced behavior of compressive material strength is the split Hopkinson pressure bar (SHPB). In this research, 83 Cor-Tuf UHPC specimens were tested in dynamic compression using a SHPB at Michigan Technological University. The specimens were separated into two categories: ambient cured and thermally treated, with aspect ratios of 0.5:1, 1:1, and 2:1 within each category. There was statistically no significant difference in mean DIF for the aspect ratios and cure regimes that were considered in this study. DIF’s ranged from 1.85 to 2.09. Failure modes were observed to be mostly Type 2, Type 4, or combinations thereof for all specimen aspect ratios when classified according to ASTM C39 fracture pattern guidelines. The Comite Euro-International du Beton (CEB) model for DIF versus strain rate does not accurately predict the DIF for UHPC data gathered in this study. Additionally, a measurement system analysis was conducted to observe variance within the measurement system and a general linear model analysis was performed to examine the interaction and main effects that aspect ratio, cannon pressure, and cure method have on the maximum dynamic stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The effects of mechanical deformation of intact cartilage tissue on chondrocyte biosynthesis in situ have been well documented, but the mechanotransduction pathways that regulate such phenomena have not been elucidated completely. The goal of this study was to examine the effects of tissue deformation on the morphology of a range of intracellular organelles which play a major role in cell biosynthesis and metabolism. DESIGN: Using chemical fixation, high pressure freezing, and electron microscopy, we imaged chondrocytes within mechanically compressed cartilage explants at high magnification and quantitatively and qualitatively assessed changes in organelle volume and shape caused by graded levels of loading. RESULTS: Compression of the tissue caused a concomitant reduction in the volume of the extracellular matrix (ECM), chondrocyte, nucleus, rough endoplasmic reticulum, and mitochondria. Interestingly, however, the Golgi apparatus was able to resist loss of intraorganelle water and retain a portion of its volume relative to the remainder of the cell. These combined results suggest that a balance between intracellular mechanical and osmotic gradients govern the changes in shape and volume of the organelles as the tissue is compressed. CONCLUSIONS: Our results lead to the interpretive hypothesis that organelle volume changes appear to be driven mainly by osmotic interactions while shape changes are mediated by structural factors, such as cytoskeletal interactions that may be linked to extracellular matrix deformations. The observed volume and shape changes of the chondrocyte organelles and the differential behavior between organelles during tissue compression provide evidence for an important mechanotransduction pathway linking translational and post-translational events (e.g., elongation and sulfation of glycosaminoglycans (GAGs) in the Golgi) to cell deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: It has been suggested that chondrocyte death by apoptosis may play a role in the pathogenesis of cartilage destruction in osteoarthritis, but the results of in-vivo and in-vitro investigations have been conflicting. To investigate further the cell death in our in-vitro model for traumatic joint injury, we performed a quantitative analysis by electron microscopy (EM) of cell morphology after injurious compression. For comparison, the TUNEL assay was also performed. DESIGN: Articular cartilage explant disks were harvested from newborn calf femoropatellar groove. The disks were subjected to injurious compression (50% strain at a strain rate of 100%/s), incubated for 3 days, and then fixed for quantitative morphological analysis. RESULTS: By TUNEL, the cell apoptosis rate increased from 7 +/- 2% in unloaded controls to 33 +/- 6% after injury (P=0.01; N=8 animals). By EM, the apoptosis rate increased from 5 +/- 1% in unloaded controls to 62 +/- 10% in injured cartilage (P=0.02, N=5 animals). Analysis by EM also identified that of the dead cells in injured disks, 97% were apoptotic by morphology. CONCLUSIONS: These results confirm a significant increase in cell death after injurious compression and suggest that most cell death observed here was by an apoptotic process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: In search of an optimal compression therapy for venous leg ulcers, a systematic review and meta-analysis was performed of randomized controlled trials (RCT) comparing compression systems based on stockings (MCS) with divers bandages. METHODS: RCT were retrieved from six sources and reviewed independently. The primary endpoint, completion of healing within a defined time frame, and the secondary endpoints, time to healing, and pain were entered into a meta-analysis using the tools of the Cochrane Collaboration. Additional subjective endpoints were summarized. RESULTS: Eight RCT (published 1985-2008) fulfilled the predefined criteria. Data presentation was adequate and showed moderate heterogeneity. The studies included 692 patients (21-178/study, mean age 61 years, 56% women). Analyzed were 688 ulcerated legs, present for 1 week to 9 years, sizing 1 to 210 cm(2). The observation period ranged from 12 to 78 weeks. Patient and ulcer characteristics were evenly distributed in three studies, favored the stocking groups in four, and the bandage group in one. Data on the pressure exerted by stockings and bandages were reported in seven and two studies, amounting to 31-56 and 27-49 mm Hg, respectively. The proportion of ulcers healed was greater with stockings than with bandages (62.7% vs 46.6%; P < .00001). The average time to healing (seven studies, 535 patients) was 3 weeks shorter with stockings (P = .0002). In no study performed bandages better than MCS. Pain was assessed in three studies (219 patients) revealing an important advantage of stockings (P < .0001). Other subjective parameters and issues of nursing revealed an advantage of MCS as well. CONCLUSIONS: Leg compression with stockings is clearly better than compression with bandages, has a positive impact on pain, and is easier to use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new compression algorithm for dynamic 3d meshes. In such a sequence of meshes, neighboring vertices have a strong tendency to behave similarly and the degree of dependencies between their locations in two successive frames is very large which can be efficiently exploited using a combination of Predictive and DCT coders (PDCT). Our strategy gathers mesh vertices of similar motions into clusters, establish a local coordinate frame (LCF) for each cluster and encodes frame by frame and each cluster separately. The vertices of each cluster have small variation over a time relative to the LCF. Therefore, the location of each new vertex is well predicted from its location in the previous frame relative to the LCF of its cluster. The difference between the original and the predicted local coordinates are then transformed into frequency domain using DCT. The resulting DCT coefficients are quantized and compressed with entropy coding. The original sequence of meshes can be reconstructed from only a few non-zero DCT coefficients without significant loss in visual quality. Experimental results show that our strategy outperforms or comes close to other coders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optimal esthetic implant restoration is a combination of a visually pleasing prosthesis and surrounding peri-implant soft tissue architecture. This article introduces a clinical method, the dynamic compression technique, of conditioning soft tissues around bone-level implants with provisional restorations in the esthetic zone. The technique has several goals: to establish an adequate emergence profile; to recreate a balanced mucosa course and level in harmony with the gingiva of the adjacent teeth, including papilla height/width, localization of the mucosal zenith and the tissue profile's triangular shape; as well as to establish an accurate proximal contact area with the adjacent tooth/implant crown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the macroeconomic effects of a compression in the long-term bond yield spread within the context of the Great Recession of 2007–09 via a time-varying parameter structural VAR model. We identify a “pure” spread shock defined as a shock that leaves the policy rate unchanged, which allows us to characterize the macroeconomic consequences of a decline in the yield spread induced by central banks’ asset purchases within an environment in which the policy rate is constrained by the effective zero lower bound. Two key findings stand out. First, compressions in the long-term yield spread exert a powerful effect on both output growth and inflation. Second, conditional on available estimates of the impact of the Federal Reserve’s and the Bank of England’s asset purchase programs on long-term yield spreads, our counterfactual simulations suggest that U.S. and U.K. unconventional monetary policy actions have averted significant risks both of deflation and of output collapses comparable to those that took place during the Great Depression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To determine the prevalence of spinal cord compression subsequent to traumatic intervertebral disk (IVD) extrusion in dogs, characterize factors associated with spinal cord compression in dogs with traumatic IVD extrusion, and evaluate the outcomes of dogs with traumatic IVD extrusion with or without spinal cord compression. DESIGN Retrospective case series. ANIMALS 31 dogs with traumatic IVD extrusion. PROCEDURES Medical records and MRI findings were reviewed for dogs with a history of trauma to the spinal region. Dogs were included in the study if a neurologic examination and MRI were performed and there was a description of clinical signs and MRI findings including identification of the spinal cord segment affected by IVD extrusion, presence or absence of spinal cord compression, treatment, and outcome available for review. RESULTS 31 of 50 (62%) dogs had traumatic IVD extrusions without any other detectable vertebral lesions; 9 (29%) and 22 (71%) of those 31 dogs did and did not have spinal cord compression, respectively. Dogs with spinal cord compression were significantly older and more likely to be chondrodystrophic and have evidence of generalized IVD degeneration, compared with dogs without spinal cord compression. The outcome for dogs with spinal cord compression was similar to that for dogs without spinal cord compression. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated traumatic IVD extrusion was common and should be considered as a differential diagnosis for dogs with trauma to the spinal region, and spinal cord compression should be evaluated, especially in older or chondrodystrophic dogs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Besides carpal tunnel and cubital tunnel syndrome, other nerve compression or constriction syndromes exist at the upper extremity. This study was performed to evaluate and summarize our initial experience with endoscopically assisted decompression. MATERIALS AND METHODS Between January 2011 and March 2012, six patients were endoscopically operated for rare compression or hour-glass-like constriction syndrome. This included eight decompressions: four proximal radial nerve decompressions, and two combined proximal median nerve and anterior interosseus nerve decompressions. Surgical technique and functional outcomes are presented. RESULTS There were no intraoperative complications in the series. Endoscopy allowed both identifying and removing all the compressive structures. In one case, the proximal radial neuropathy developed for 10 years without therapy and a massive hour-glass nerve constriction was observed intraoperatively which led us to perform a concurrent complementary tendon transfer to improve fingers and thumb extension. Excellent results were achieved according to the modified Roles and Maudsley classification in five out of six cases. All but one patient considered the results excellent. The poorest responder developed a CRPS II and refused post-operative physiotherapy. CONCLUSION Endoscopically assisted decompression in rare compression syndrome of the upper extremity is highly appreciated by patients and provides excellent functional results. This minimally invasive surgical technique will likely be further described in future clinical studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer tomography (CT)-based finite element (FE) models of vertebral bodies assess fracture load in vitro better than dual energy X-ray absorptiometry, but boundary conditions affect stress distribution under the endplates that may influence ultimate load and damage localisation under post-yield strains. Therefore, HRpQCT-based homogenised FE models of 12 vertebral bodies were subjected to axial compression with two distinct boundary conditions: embedding in polymethylmethalcrylate (PMMA) and bonding to a healthy intervertebral disc (IVD) with distinct hyperelastic properties for nucleus and annulus. Bone volume fraction and fabric assessed from HRpQCT data were used to determine the elastic, plastic and damage behaviour of bone. Ultimate forces obtained with PMMA were 22% higher than with IVD but correlated highly (R2 = 0.99). At ultimate force, distinct fractions of damage were computed in the endplates (PMMA: 6%, IVD: 70%), cortex and trabecular sub-regions, which confirms previous observations that in contrast to PMMA embedding, failure initiated underneath the nuclei in healthy IVDs. In conclusion, axial loading of vertebral bodies via PMMA embedding versus healthy IVD overestimates ultimate load and leads to distinct damage localisation and failure pattern.