848 resultados para Distributed artificial intelligence
Resumo:
The forensic two-trace problem is a perplexing inference problem introduced by Evett (J Forensic Sci Soc 27:375-381, 1987). Different possible ways of wording the competing pair of propositions (i.e., one proposition advanced by the prosecution and one proposition advanced by the defence) led to different quantifications of the value of the evidence (Meester and Sjerps in Biometrics 59:727-732, 2003). Here, we re-examine this scenario with the aim of clarifying the interrelationships that exist between the different solutions, and in this way, produce a global vision of the problem. We propose to investigate the different expressions for evaluating the value of the evidence by using a graphical approach, i.e. Bayesian networks, to model the rationale behind each of the proposed solutions and the assumptions made on the unknown parameters in this problem.
Resumo:
We propose a method for brain atlas deformation in the presence of large space-occupying tumors, based on an a priori model of lesion growth that assumes radial expansion of the lesion from its starting point. Our approach involves three steps. First, an affine registration brings the atlas and the patient into global correspondence. Then, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. The last step is the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. Results show that a good registration is performed and that the method can be applied to automatic segmentation of structures and substructures in brains with gross deformation, with important medical applications in neurosurgery, radiosurgery, and radiotherapy.
Resumo:
L'objectiu principal del projecte és la creació d'una aplicació per a telèfons intel·ligents que intenti predir la volatilitat no atribuïble al mercat per tal de permetre a l'usuari crear portfolios òptims utilitzant tècniques d'intel·ligència artificial com són les Support Vector Machines (SVM). Una vegada s'hagi predit aquesta volatilitat es crearà un portfolio òptim amb el pes adequat de cada un dels valors, per tal d'obtenir una inversió amb el mínim risc possible.
Resumo:
Des dels inicis dels ordinadors com a màquines programables, l’home ha intentat dotar-los de certa intel•ligència per tal de pensar o raonar el més semblant possible als humans. Un d’aquests intents ha sigut fer que la màquina sigui capaç de pensar de tal manera que estudiï jugades i guanyi partides d’escacs. En l’actualitat amb els actuals sistemes multi tasca, orientat a objectes i accés a memòria i gràcies al potent hardware del que disposem, comptem amb una gran varietat de programes que es dediquen a jugar a escacs. Però no hi ha només programes petits, hi ha fins i tot màquines senceres dedicades a calcular i estudiar jugades per tal de guanyar als millors jugadors del món. L’objectiu del meu treball és dur a terme un estudi i implementació d’un d’aquests programes, per això es divideix en dues parts. La part teòrica o de l’estudi, consta d’un estudi dels sistemes d’intel•ligència artificial que es dediquen a jugar a escacs, estudi i cerca d’una funció d’avaluació vàlida i estudi dels algorismes de cerca. La part pràctica del treball es basa en la implementació d’un sistema intel•ligent capaç de jugar a escacs amb certa lògica. Aquesta implementació es porta a terme amb l’ajuda de les llibreries SDL, utilitzant l’algorisme minimax amb poda alfa-beta i codi c++. Com a conclusió del projecte m’agradaria remarcar que l’estudi realitzat m’ha deixat veure que crear un joc d’escacs no era tan fàcil com jo pensava però m’ha aportat la satisfacció d’aplicar tot el que he après durant la carrera i de descobrir moltes altres coses noves.
Resumo:
The high complexity of cortical convolutions in humans is very challenging both for engineers to measure and compare it, and for biologists and physicians to understand it. In this paper, we propose a surface-based method for the quantification of cortical gyrification. Our method uses accurate 3-D cortical reconstruction and computes local measurements of gyrification at thousands of points over the whole cortical surface. The potential of our method to identify and localize precisely gyral abnormalities is illustrated by a clinical study on a group of children affected by 22q11 Deletion Syndrome, compared to control individuals.
Resumo:
Aquest projecte documenta la realització d'un videojoc anomenat TriviaRace per a la consola Xbox 360. Els jugadors han de competir per ser els primers en arribar al final de l'escenari i contestar correctament a una pregunta que se'ls formula. Per arribar-hi abans que els seus contrincants, poden utilitzar objectes per a molestar-los. Poden jugar 4 jugadors simultàniament, ja siguin controlats per persones reals o per la consola, mitjançant una senzilla intel·ligència artificial. El desenvolupament del joc s'ha realitzat mitjançant XNA, unes eines de Microsoft orientades a la creació de videojocs per a vàries plataformes, inclosa la consola Xbox 360.
Resumo:
Introduction: Difficult tracheal intubation remains a constant and significant source of morbidity and mortality in anaesthetic practice. Insufficient airway assessment in the preoperative period continues to be a major cause of unanticipated difficult intubation. Although many risk factors have already been identified, preoperative airway evaluation is not always regarded as a standard procedure and the respective weight of each risk factor remains unclear. Moreover the predictive scores available are not sensitive, moderately specific and often operator-dependant. In order to improve the preoperative detection of patients at risk for difficult intubation, we developed a system for automated and objective evaluation of morphologic criteria of the face and neck using video recordings and advanced techniques borrowed from face recognition. Method and results: Frontal video sequences were recorded in 5 healthy volunteers. During the video recording, subjects were requested to perform maximal flexion-extension of the neck and to open wide the mouth with tongue pulled out. A robust and real-time face tracking system was then applied, allowing to automatically identify and map a grid of 55 control points on the face, which were tracked during head motion. These points located important features of the face, such as the eyebrows, the nose, the contours of the eyes and mouth, and the external contours, including the chin. Moreover, based on this face tracking, the orientation of the head could also be estimated at each frame of the video sequence. Thus, we could infer for each frame the pitch angle of the head pose (related to the vertical rotation of the head) and obtain the degree of head extension. Morphological criteria used in the most frequent cited predictive scores were also extracted, such as mouth opening, degree of visibility of the uvula or thyreo-mental distance. Discussion and conclusion: Preliminary results suggest the high feasibility of the technique. The next step will be the application of the same automated and objective evaluation to patients who will undergo tracheal intubation. The difficulties related to intubation will be then correlated to the biometric characteristics of the patients. The objective in mind is to analyze the biometrics data with artificial intelligence algorithms to build a highly sensitive and specific predictive test.
Resumo:
Three-dimensional imaging and quantification of myocardial function are essential steps in the evaluation of cardiac disease. We propose a tagged magnetic resonance imaging methodology called zHARP that encodes and automatically tracks myocardial displacement in three dimensions. Unlike other motion encoding techniques, zHARP encodes both in-plane and through-plane motion in a single image plane without affecting the acquisition speed. Postprocessing unravels this encoding in order to directly track the 3-D displacement of every point within the image plane throughout an entire image sequence. Experimental results include a phantom validation experiment, which compares zHARP to phase contrast imaging, and an in vivo study of a normal human volunteer. Results demonstrate that the simultaneous extraction of in-plane and through-plane displacements from tagged images is feasible.
Resumo:
In this work, we present the cultural evolution that has allowed to overcome many problems derived from the limitations of the human body. These limitations have been solved by a"cyborization" process that began since early anthropogenesis. Originally, it was envisioned to deal with some diseases, accidents or body malfunctions. Nowadays, augmentations improve common human capabilities; one of the most notable is the increase of brain efficiency by using connections with a computer. A basic social question also addressed is which people will and should have access to these augmentations. Advanced humanoid robots (with human external aspect, artificial intelligence and even emotions) already exist and consequently a number of questions arise. For instance, will robots be considered living organisms? Could they be considered as persons? Will we confer the human status to robots? These questions are discussed. Our conclusions are that the advanced humanoid robots display some actions that may be considered as life-like, yet different to the life associated with living organisms, also, to some extend they could be considered as persons-like, but not humans.
Resumo:
El imaginario colectivo actual, reflejado sobre todo en el cine, muestra una profunda transformación de las características esenciales de la humanidad. La racionalidad ha sido desplazada por otros aspectos tradicionalmente relegados a lo irracional, lo animal, lo corporal, como la emotividad, el deseo, las pasiones. La ciencia-ficción y el cine expresan perfectamente esta deriva, pero no son las únicas manifestaciones. Juntamente con algunos ejemplos cinematográficos, este artículo extrae otros provenientes de la filosofía o la literatura modernas, así como de las barbaries sociales contemporáneas -genocidio, colonialismo¿ y alguna otra nota del campo de la neurología científica y la inteligencia artificial.
Resumo:
We conduct a large-scale comparative study on linearly combining superparent-one-dependence estimators (SPODEs), a popular family of seminaive Bayesian classifiers. Altogether, 16 model selection and weighing schemes, 58 benchmark data sets, and various statistical tests are employed. This paper's main contributions are threefold. First, it formally presents each scheme's definition, rationale, and time complexity and hence can serve as a comprehensive reference for researchers interested in ensemble learning. Second, it offers bias-variance analysis for each scheme's classification error performance. Third, it identifies effective schemes that meet various needs in practice. This leads to accurate and fast classification algorithms which have an immediate and significant impact on real-world applications. Another important feature of our study is using a variety of statistical tests to evaluate multiple learning methods across multiple data sets.
Resumo:
Organisations in Multi-Agent Systems (MAS) have proven to be successful in regulating agent societies. Nevertheless, changes in agents' behaviour or in the dynamics of the environment may lead to a poor fulfilment of the system's purposes, and so the entire organisation needs to be adapted. In this paper we focus on endowing the organisation with adaptation capabilities, instead of expecting agents to be capable of adapting the organisation by themselves. We regard this organisational adaptation as an assisting service provided by what we call the Assistance Layer. Our generic Two Level Assisted MAS Architecture (2-LAMA) incorporates such a layer. We empirically evaluate this approach by means of an agent-based simulator we have developed for the P2P sharing network domain. This simulator implements 2-LAMA architecture and supports the comparison between different adaptation methods, as well as, with the standard BitTorrent protocol. In particular, we present two alternatives to perform norm adaptation and one method to adapt agents'relationships. The results show improved performance and demonstrate that the cost of introducing an additional layer in charge of the system's adaptation is lower than its benefits.
Resumo:
Ski resorts are deploying more and more systems of artificial snow. These tools are necessary to ensure an important economic activity for the high alpine valleys. However, artificial snow raises important environmental issues that can be reduced by an optimization of its production. This paper presents a software prototype based on artificial intelligence to help ski resorts better manage their snowpack. It combines on one hand a General Neural Network for the analysis of the snow cover and the spatial prediction, with on the other hand a multiagent simulation of skiers for the analysis of the spatial impact of ski practice. The prototype has been tested on the ski resort of Verbier (Switzerland).