960 resultados para Discrete Data Models
Resumo:
In a network of competing species, a competitive intransitivity occurs when the ranking of competitive abilities does not follow a linear hierarchy (A > B > C but C > A). A variety of mathematical models suggests that intransitive networks can prevent or slow down competitive exclusion and maintain biodiversity by enhancing species coexistence. However, it has been difficult to assess empirically the relative importance of intransitive competition because a large number of pairwise species competition experiments are needed to construct a competition matrix that is used to parameterize existing models. Here we introduce a statistical framework for evaluating the contribution of intransitivity to community structure using species abundance matrices that are commonly generated from replicated sampling of species assemblages. We provide metrics and analytical methods for using abundance matrices to estimate species competition and patch transition matrices by using reverse-engineering and a colonization-competition model. These matrices provide complementary metrics to estimate the degree of intransitivity in the competition network of the sampled communities. Benchmark tests reveal that the proposed methods could successfully detect intransitive competition networks, even in the absence of direct measures of pairwise competitive strength. To illustrate the approach, we analyzed patterns of abundance and biomass of five species of necrophagous Diptera and eight species of their hymenopteran parasitoids that co-occur in beech forests in Germany. We found evidence for a strong competitive hierarchy within communities of flies and parasitoids. However, for parasitoids, there was a tendency towards increasing intransitivity in higher weight classes, which represented larger resource patches. These tests provide novel methods for empirically estimating the degree of intransitivity in competitive networks from observational datasets. They can be applied to experimental measures of pairwise species interactions, as well as to spatio-temporal samples of assemblages in homogenous environments or environmental gradients.
Resumo:
Sound knowledge of the spatial and temporal patterns of rockfalls is fundamental for the management of this very common hazard in mountain environments. Process-based, three-dimensional simulation models are nowadays capable of reproducing the spatial distribution of rockfall occurrences with reasonable accuracy through the simulation of numerous individual trajectories on highly-resolved digital terrain models. At the same time, however, simulation models typically fail to quantify the ‘real’ frequency of rockfalls (in terms of return intervals). The analysis of impact scars on trees, in contrast, yields real rockfall frequencies, but trees may not be present at the location of interest and rare trajectories may not necessarily be captured due to the limited age of forest stands. In this article, we demonstrate that the coupling of modeling with tree-ring techniques may overcome the limitations inherent to both approaches. Based on the analysis of 64 cells (40 m × 40 m) of a rockfall slope located above a 1631-m long road section in the Swiss Alps, we illustrate results from 488 rockfalls detected in 1260 trees. We illustrate that tree impact data cannot only be used (i) to reconstruct the real frequency of rockfalls for individual cells, but that they also serve (ii) the calibration of the rockfall model Rockyfor3D, as well as (iii) the transformation of simulated trajectories into real frequencies. Calibrated simulation results are in good agreement with real rockfall frequencies and exhibit significant differences in rockfall activity between the cells (zones) along the road section. Real frequencies, expressed as rock passages per meter road section, also enable quantification and direct comparison of the hazard potential between the zones. The contribution provides an approach for hazard zoning procedures that complements traditional methods with a quantification of rockfall frequencies in terms of return intervals through a systematic inclusion of impact records in trees.
Resumo:
We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an un-binned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1 sigma for all periods suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8 sigma, the analysis of a multiple-scatter control sample and the phase of the modulation disfavor a dark matter interpretation. The DAMA/LIBRA annual modulation interpreted as a dark matter signature with axial-vector coupling of WIMPs to electrons is excluded at 4.8 sigma.
Resumo:
A problem frequently encountered in Data Envelopment Analysis (DEA) is that the total number of inputs and outputs included tend to be too many relative to the sample size. One way to counter this problem is to combine several inputs (or outputs) into (meaningful) aggregate variables reducing thereby the dimension of the input (or output) vector. A direct effect of input aggregation is to reduce the number of constraints. This, in its turn, alters the optimal value of the objective function. In this paper, we show how a statistical test proposed by Banker (1993) may be applied to test the validity of a specific way of aggregating several inputs. An empirical application using data from Indian manufacturing for the year 2002-03 is included as an example of the proposed test.
Resumo:
We present a framework for fitting multiple random walks to animal movement paths consisting of ordered sets of step lengths and turning angles. Each step and turn is assigned to one of a number of random walks, each characteristic of a different behavioral state. Behavioral state assignments may be inferred purely from movement data or may include the habitat type in which the animals are located. Switching between different behavioral states may be modeled explicitly using a state transition matrix estimated directly from data, or switching probabilities may take into account the proximity of animals to landscape features. Model fitting is undertaken within a Bayesian framework using the WinBUGS software. These methods allow for identification of different movement states using several properties of observed paths and lead naturally to the formulation of movement models. Analysis of relocation data from elk released in east-central Ontario, Canada, suggests a biphasic movement behavior: elk are either in an "encamped" state in which step lengths are small and turning angles are high, or in an "exploratory" state, in which daily step lengths are several kilometers and turning angles are small. Animals encamp in open habitat (agricultural fields and opened forest), but the exploratory state is not associated with any particular habitat type.
Resumo:
Prevalent sampling is an efficient and focused approach to the study of the natural history of disease. Right-censored time-to-event data observed from prospective prevalent cohort studies are often subject to left-truncated sampling. Left-truncated samples are not randomly selected from the population of interest and have a selection bias. Extensive studies have focused on estimating the unbiased distribution given left-truncated samples. However, in many applications, the exact date of disease onset was not observed. For example, in an HIV infection study, the exact HIV infection time is not observable. However, it is known that the HIV infection date occurred between two observable dates. Meeting these challenges motivated our study. We propose parametric models to estimate the unbiased distribution of left-truncated, right-censored time-to-event data with uncertain onset times. We first consider data from a length-biased sampling, a specific case in left-truncated samplings. Then we extend the proposed method to general left-truncated sampling. With a parametric model, we construct the full likelihood, given a biased sample with unobservable onset of disease. The parameters are estimated through the maximization of the constructed likelihood by adjusting the selection bias and unobservable exact onset. Simulations are conducted to evaluate the finite sample performance of the proposed methods. We apply the proposed method to an HIV infection study, estimating the unbiased survival function and covariance coefficients. ^
Resumo:
The performance of the Hosmer-Lemeshow global goodness-of-fit statistic for logistic regression models was explored in a wide variety of conditions not previously fully investigated. Computer simulations, each consisting of 500 regression models, were run to assess the statistic in 23 different situations. The items which varied among the situations included the number of observations used in each regression, the number of covariates, the degree of dependence among the covariates, the combinations of continuous and discrete variables, and the generation of the values of the dependent variable for model fit or lack of fit.^ The study found that the $\rm\ C$g* statistic was adequate in tests of significance for most situations. However, when testing data which deviate from a logistic model, the statistic has low power to detect such deviation. Although grouping of the estimated probabilities into quantiles from 8 to 30 was studied, the deciles of risk approach was generally sufficient. Subdividing the estimated probabilities into more than 10 quantiles when there are many covariates in the model is not necessary, despite theoretical reasons which suggest otherwise. Because it does not follow a X$\sp2$ distribution, the statistic is not recommended for use in models containing only categorical variables with a limited number of covariate patterns.^ The statistic performed adequately when there were at least 10 observations per quantile. Large numbers of observations per quantile did not lead to incorrect conclusions that the model did not fit the data when it actually did. However, the statistic failed to detect lack of fit when it existed and should be supplemented with further tests for the influence of individual observations. Careful examination of the parameter estimates is also essential since the statistic did not perform as desired when there was moderate to severe collinearity among covariates.^ Two methods studied for handling tied values of the estimated probabilities made only a slight difference in conclusions about model fit. Neither method split observations with identical probabilities into different quantiles. Approaches which create equal size groups by separating ties should be avoided. ^
Resumo:
Total organic carbon (TOC) was analyzed on four transects along 140°W in 1992 using a high temperature combustion/discrete injection (HTC/DI) analyzer. For two of the transects, the analyses were conducted on-board ship. Mixed-layer concentrations of organic carbon varied from about 80 µM C at either end of the transect (12°N and 12°S) to about 60 µM C at the equator. Total organic carbon concentrations decreased rapidly below the mixed-layer to about 38-40 µM C at 1000 m across the transect. Little variation was observed below this depth; deep water concentrations below 2000 m were virtually monotonic at about 36 µM C. Repeat measurements made on subsequent cruises consistently found the same concentrations at 1000 m or deeper, but substantial variations were observed in the mixed-layer and the upper water column above 400 m depth. Linear mixing models of total organic carbon versus sigmaT exhibited zones of organic carbon formation and consumption. TOC was found to be inversely correlated with apparent oxygen utilization (AOU) in the region between the mixed-layer and the oxygen minimum. In the mixed-layer, TOC concentrations varied seasonally. Part of the variations in TOC at the equator was driven by changes in the upwelling rate in response to variations in physical forcing related to an El Niño and to the passage of tropical instability waves. TOC export fluxes, calculated from simple box models, averaged 8±4 mmol C/m**2/day at the equator and also varied seasonally. These export fluxes account for 50-75% of the total carbon deficit and are consistent with other estimates and model predictions.
Resumo:
The Schwalbenberg II loess-paleosol sequence (LPS) denotes a key site for Marine Isotope Stage (MIS 3) in Western Europe owing to eight succeeding cambisols, which primarily constitute the Ahrgau Subformation. Therefore, this LPS qualifies as a test candidate for the potential of temporal high-resolution geochemical data obtained X-ray fluorescence (XRF) scanning of discrete samplesproviding a fast and non-destructive tool for determining the element composition. The geochemical data is first contextualized to existing proxy data such as magnetic susceptibility (MS) and organic carbon (Corg) and then aggregated to element log ratios characteristic for weathering intensity [LOG (Ca/Sr), LOG (Rb/Sr), LOG (Ba/Sr), LOG (Rb/K)] and dust provenance [LOG (Ti/Zr), LOG (Ti/Al), LOG (Si/Al)]. Generally, an interpretation of rock magnetic particles is challenged in western Europe, where not only magnetic enhancement but also depletion plays a role. Our data indicates leaching and top-soil erosion induced MS depletion at the Schwalbenberg II LPS. Besides weathering, LOG (Ca/Sr) is susceptible for secondary calcification. Thus, also LOG (Rb/Sr) and LOG (Ba/Sr) are shown to be influenced by calcification dynamics. Consequently, LOG (Rb/K) seems to be the most suitable weathering index identifying the Sinzig Soils S1 and S2 as the most pronounced paleosols for this site. Sinzig Soil S3 is enclosed by gelic gleysols and in contrast to S1 and S2 only initially weathered pointing to colder climate conditions. Also the Remagen Soils are characterized by subtle to moderate positive excursions in the weathering indices. Comparing the Schwalbenberg II LPS with the nearby Eifel Lake Sediment Archive (ELSA) and other more distant German, Austrian and Czech LPS while discussing time and climate as limiting factors for pedogenesis, we suggest that the lithologically determined paleosols are in-situ soil formations. The provenance indices document a Zr-enrichment at the transition from the Ahrgau to the Hesbaye Subformation. This is explained by a conceptual model incorporating multiple sediment recycling and sorting effects in eolian and fluvial domains.
Resumo:
Studies on the impact of historical, current and future global change require very high-resolution climate data (less or equal 1km) as a basis for modelled responses, meaning that data from digital climate models generally require substantial rescaling. Another shortcoming of available datasets on past climate is that the effects of sea level rise and fall are not considered. Without such information, the study of glacial refugia or early Holocene plant and animal migration are incomplete if not impossible. Sea level at the last glacial maximum (LGM) was approximately 125m lower, creating substantial additional terrestrial area for which no current baseline data exist. Here, we introduce the development of a novel, gridded climate dataset for LGM that is both very high resolution (1km) and extends to the LGM sea and land mask. We developed two methods to extend current terrestrial precipitation and temperature data to areas between the current and LGM coastlines. The absolute interpolation error is less than 1°C and 0.5 °C for 98.9% and 87.8% of all pixels for the first two 1 arc degree distance zones. We use the change factor method with these newly assembled baseline data to downscale five global circulation models of LGM climate to a resolution of 1km for Europe. As additional variables we calculate 19 'bioclimatic' variables, which are often used in climate change impact studies on biological diversity. The new LGM climate maps are well suited for analysing refugia and migration during Holocene warming following the LGM.