902 resultados para Digital techniques
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Wellfleet, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1887, the edition date is September, 1893 and this map has a reprint date of 1942. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Winchendon, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1887, and the edition date is 1890. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Worcester, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1885, and the edition date is 1886. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Yarmouth, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1886-87, the edition date is September, 1893 and this map has a reprint date of 1942. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Providence, Rhode Island quadrangle which includes areas in the state of Massachusetts. The survey dates (ground condition) of the original paper map are 1885 and 1887, the edition date is February, 1894 and this map has a reprint date of October, 1911. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Webster, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1886-87, the edition date is July, 1892 and this map has a reprint date of 1943. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Springfield, Massachusetts quadrangle. The survey dates (ground condition) of the original paper map are 1886 and 1887 and the edition date is 1889. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Sheffield, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1884-1885, the edition date is October, 1897 and this map has a reprint date of March, 1908. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Sandisfield, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1886. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Salem, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1886, the edition date is October, 1893 and this map has a reprint date of December, 1897. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Provincetown, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1887, the edition date is July, 1889 and this map has a reprint date of January, 1900. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Taunton, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1885, the edition date is September, 1893 and this map has a reprint date of 1940. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
Vita.
Resumo:
Thesis (M. S.)--University of Illinois at Urbana-Champaign.
Resumo:
The international perspectives on these issues are especially valuable in an increasingly connected, but still institutionally and administratively diverse world. The research addressed in several chapters in this volume includes issues around technical standards bodies like EpiDoc and the TEI, engaging with ways these standards are implemented, documented, taught, used in the process of transcribing and annotating texts, and used to generate publications and as the basis for advanced textual or corpus research. Other chapters focus on various aspects of philological research and content creation, including collaborative or community driven efforts, and the issues surrounding editorial oversight, curation, maintenance and sustainability of these resources. Research into the ancient languages and linguistics, in particular Greek, and the language teaching that is a staple of our discipline, are also discussed in several chapters, in particular for ways in which advanced research methods can lead into language technologies and vice versa and ways in which the skills around teaching can be used for public engagement, and vice versa. A common thread through much of the volume is the importance of open access publication or open source development and distribution of texts, materials, tools and standards, both because of the public good provided by such models (circulating materials often already paid for out of the public purse), and the ability to reach non-standard audiences, those who cannot access rich university libraries or afford expensive print volumes. Linked Open Data is another technology that results in wide and free distribution of structured information both within and outside academic circles, and several chapters present academic work that includes ontologies and RDF, either as a direct research output or as essential part of the communication and knowledge representation. Several chapters focus not on the literary and philological side of classics, but on the study of cultural heritage, archaeology, and the material supports on which original textual and artistic material are engraved or otherwise inscribed, addressing both the capture and analysis of artefacts in both 2D and 3D, the representation of data through archaeological standards, and the importance of sharing information and expertise between the several domains both within and without academia that study, record and conserve ancient objects. Almost without exception, the authors reflect on the issues of interdisciplinarity and collaboration, the relationship between their research practice and teaching and/or communication with a wider public, and the importance of the role of the academic researcher in contemporary society and in the context of cutting edge technologies. How research is communicated in a world of instant- access blogging and 140-character micromessaging, and how our expectations of the media affect not only how we publish but how we conduct our research, are questions about which all scholars need to be aware and self-critical.