997 resultados para Diffuse solar irradiance
Resumo:
We present a practical implementation of a solar thermophotovoltaic (TPV) system. The system presented in this paper comprises a sunlight concentrator system, a cylindrical cup-shaped absorber/emitter (made of tungsten coated with HfO2), and an hexagonal-shaped water-cooled TPV generator comprising 24 germanium TPV cells, which is surrounding the cylindrical absorber/emitter. This paper focuses on the development of shingled TPV cell arrays, the characterization of the sunlight concentrator system, the estimation of the temperature achieved by the cylindrical emitters operated under concentrated sunlight, and the evaluation of the full system performance under real outdoor irradiance conditions. From the system characterization, we have measured short-circuit current densities up to 0.95 A/cm2, electric power densities of 67 mW/cm2, and a global conversion efficiency of about 0.8%. To our knowledge, this is the first overall solar-to-electricity efficiency reported for a complete solar thermophotovoltaic system. The very low efficiency is mainly due to the overheating of the cells (up to 120 °C) and to the high optical concentrator losses, which prevent the achievement of the optimum emitter temperature. The loss analysis shows that by improving both aspects, efficiencies above 5% could be achievable in the very short term and efficiencies above 10% could be achieved with further improvements.
Resumo:
Energía termosolar (de concentración) es uno de los nombres que hacen referencia en español al término inglés “concentrating solar power”. Se trata de una tecnología basada en la captura de la potencia térmica de la radiación solar, de forma que permita alcanzar temperaturas capaces de alimentar un ciclo termodinámico convencional (o avanzado); el futuro de esta tecnología depende principalmente de su capacidad para concentrar la radiación solar de manera eficiente y económica. La presente tesis está orientada hacia la resolución de ciertos problemas importantes relacionados con este objetivo. La mencionada necesidad de reducir costes en la concentración de radiación solar directa, asegurando el objetivo termodinámico de calentar un fluido hasta una determinada temperatura, es de vital importancia. Los colectores lineales Fresnel han sido identificados en la literatura científica como una tecnología con gran potencial para alcanzar esta reducción de costes. Dicha tecnología ha sido seleccionada por numerosas razones, entre las que destacan su gran libertad de diseño y su actual estado inmaduro. Con el objetivo de responder a este desafío se desarrollado un detallado estudio de las propiedades ópticas de los colectores lineales Fresnel, para lo cual se han utilizado métodos analíticos y numéricos de manera combinada. En primer lugar, se han usado unos modelos para la predicción de la localización y la irradiación normal directa del sol junto a unas relaciones analíticas desarrolladas para estudiar el efecto de múltiples variables de diseño en la energía incidente sobre los espejos. Del mismo modo, se han obtenido analíticamente los errores debidos al llamado “off-axis aberration”, a la apertura de los rayos reflejados en los espejos y a las sombras y bloqueos entre espejos. Esto ha permitido la comparación de diferentes formas de espejo –planos, circulares o parabólicos–, así como el diseño preliminar de la localización y anchura de los espejos y receptor sin necesidad de costosos métodos numéricos. En segundo lugar, se ha desarrollado un modelo de trazado de rayos de Monte Carlo con el objetivo de comprobar la validez del estudio analítico, pero sobre todo porque este no es preciso en el estudio de la reflexión en espejos. El código desarrollado está específicamente ideado para colectores lineales Fresnel, lo que ha permitido la reducción del tiempo de cálculo en varios órdenes de magnitud en comparación con un programa comercial más general. Esto justifica el desarrollo de un nuevo código en lugar de la compra de una licencia de otro programa. El modelo ha sido usado primeramente para comparar la intensidad de flujo térmico y rendimiento de colectores Fresnel, con y sin reflector secundario, con los colectores cilíndrico parabólicos. Finalmente, la conjunción de los resultados obtenidos en el estudio analítico con el programa numérico ha sido usada para optimizar el campo solar para diferentes orientaciones –Norte-Sur y Este-Oeste–, diferentes localizaciones –Almería y Aswan–, diferentes inclinaciones hacia el Trópico –desde 0 deg hasta 32 deg– y diferentes mínimos de intensidad del flujo en el centro del receptor –10 kW/m2 y 25 kW/m2–. La presente tesis ha conducido a importantes descubrimientos que deben ser considerados a la hora de diseñar un campo solar Fresnel. En primer lugar, los espejos utilizados no deben ser plano, sino cilíndricos o parabólicos, ya que los espejos curvos implican mayores concentraciones y rendimiento. Por otro lado, se ha llegado a la conclusión de que la orientación Este-Oeste es más propicia para localizaciones con altas latitudes, como Almería, mientras que en zonas más cercanas a los trópicos como Aswan los campos Norte-Sur conducen a mayores rendimientos. Es de destacar que la orientación Este-Oeste requiere aproximadamente la mitad de espejos que los campos Norte-Sur, puediendo estar inclinados hacia los Trópicos para mejorar el rendimiento, y que alcanzan parecidos valores de intensidad térmica en el receptor todos los días a mediodía. Sin embargo, los campos con orientación Norte-Sur permiten un flujo más constante a lo largo de un día. Por último, ha sido demostrado que el uso de diseños pre-optimizados analíticamente, con anchura de espejos y espaciado entre espejos variables a lo ancho del campo, pueden implicar aumentos de la energía generada por metro cuadrado de espejos de hasta el 6%. El rendimiento óptico anual de los colectores cilíndrico parabólicos es 23 % mayor que el rendimiento de los campos Fresnel en Almería, mientras que la diferencia es de solo 9 % en Aswan. Ello implica que, para alcanzar el mismo precio de electricidad que la tecnología de referencia, la reducción de costes de instalación por metro cuadrado de espejo debe estar entre el 10 % y el 25 %, y que los colectores lineales Fresnel tienen más posibilidades de ser desarrollados en zonas de bajas latitudes. Como consecuencia de los estudios desarrollados en esta tesis se ha patentado un sistema de almacenamiento que tiene en cuenta la variación del flujo térmico en el receptor a lo largo del día, especialmente para campos con orientación Este-Oeste. Este invento permitiría el aprovechamiento de la energía incidente durante más parte del año, aumentando de manera apreciable los rendimientos óptico y térmico. Abstract Concentrating solar power is the common name of a technology based on capturing the thermal power of solar radiation, in a suitable way to reach temperatures able to activate a conventional (or advanced) thermodynamic cycle to generate electricity; this quest mainly depends on our ability to concentrate solar radiation in a cheap and efficient way. The present thesis is focused to highlight and help solving some of the important issues related to this problem. The need of reducing costs in concentrating the direct solar radiation, but without jeopardizing the thermodynamic objective of heating a fluid up to the required temperature, is of prime importance. Linear Fresnel collectors have been identified in the scientific literature as a technology with high potential to reach this cost reduction. This technology has been selected because of a number of reasons, particularly the degrees of freedom of this type of concentrating configuration and its current immature state. In order to respond to this challenge, a very detailed exercise has been carried out on the optical properties of linear Fresnel collectors. This has been done combining analytic and numerical methods. First, the effect of the design variables on the ratio of energy impinging onto the reflecting surface has been studied using analytically developed equations, together with models that predict the location and direct normal irradiance of the sun at any moment. Similarly, errors due to off-axis aberration, to the aperture of the reflected energy beam and to shading and blocking effects have been obtained analytically. This has allowed the comparison of different shapes of mirrors –flat, cylindrical or parabolic–, as well as a preliminary optimization of the location and width of mirrors and receiver with no need of time-consuming numerical models. Second, in order to prove the validity of the analytic results, but also due to the fact that the study of the reflection process is not precise enough when using analytic equations, a Monte Carlo Ray Trace model has been developed. The developed code is designed specifically for linear Fresnel collectors, which has reduced the computing time by several orders of magnitude compared to a wider commercial software. This justifies the development of the new code. The model has been first used to compare radiation flux intensities and efficiencies of linear Fresnel collectors, both multitube receiver and secondary reflector receiver technologies, with parabolic trough collectors. Finally, the results obtained in the analytic study together with the numeric model have used in order to optimize the solar field for different orientations –North-South and East-West–, different locations –Almería and Aswan–, different tilts of the field towards the Tropic –from 0 deg to 32 deg– and different flux intensity minimum requirements –10 kW/m2 and 25 kW/m2. This thesis work has led to several important findings that should be considered in the design of Fresnel solar fields. First, flat mirrors should not be used in any case, as cylindrical and parabolic mirrors lead to higher flux intensities and efficiencies. Second, it has been concluded that, in locations relatively far from the Tropics such as Almería, East-West embodiments are more efficient, while in Aswan North- South orientation leads to a higher annual efficiency. It must be noted that East-West oriented solar fields require approximately half the number of mirrors than NS oriented fields, can be tilted towards the Equator in order to increase the efficiency and attain similar values of flux intensity at the receiver every day at midday. On the other hand, in NS embodiments the flux intensity is more even during each single day. Finally, it has been proved that the use of analytic designs with variable shift between mirrors and variable width of mirrors across the field can lead to improvements in the electricity generated per reflecting surface square meter up to 6%. The annual optical efficiency of parabolic troughs has been found to be 23% higher than the efficiency of Fresnel fields in Almería, but it is only around 9% higher in Aswan. This implies that, in order to attain the same levelized cost of electricity than parabolic troughs, the required reduction of installation costs per mirror square meter is in the range of 10-25%. Also, it is concluded that linear Fresnel collectors are more suitable for low latitude areas. As a consequence of the studies carried out in this thesis, an innovative storage system has been patented. This system takes into account the variation of the flux intensity along the day, especially for East-West oriented solar fields. As a result, the invention would allow to exploit the impinging radiation along longer time every day, increasing appreciably the optical and thermal efficiencies.
Resumo:
Multi-junction solar cells are widely used in high-concentration photovoltaic systems (HCPV) attaining the highest efficiencies in photovoltaic energy generation. This technology is more dependent on the spectral variations of the impinging Direct Normal Irradiance (DNI) than conventional photovoltaics based on silicon solar cells and consequently demands a deeper knowledge of the solar resource characteristics. This article explores the capabilities of spectral indexes, namely, spectral matching ratios (SMR), to spectrally characterize the annual irradiation reaching a particular location on the Earth and to provide the necessary information for the spectral optimization of a MJ solar cell in that location as a starting point for CPV module spectral tuning. Additionally, the relationship between such indexes and the atmosphere parameters, such as the aerosol optical depth (AOD), precipitable water (PW), and air mass (AM), is discussed using radiative transfer models such as SMARTS to generate the spectrally-resolved DNI. The network of ground-based sun and sky-scanning radiometers AERONET (AErosol RObotic NETwork) is exploited to obtain the atmosphere parameters for a selected bunch of 34 sites worldwide. Finally, the SMR indexes are obtained for every location, and a comparative analysis is carried out for four architectures of triple junction solar cells, covering both lattice match and metamorphic technologies. The differences found among cell technologies are much less significant than among locations.
Resumo:
Arctic sea ice has declined and become thinner and younger (more seasonal) during the last decade. One consequence of this is that the surface energy budget of the Arctic Ocean is changing. While the role of surface albedo has been studied intensively, it is still widely unknown how much light penetrates through sea ice into the upper ocean, affecting sea-ice mass balance, ecosystems, and geochemical processes. Here we present the first large-scale under-ice light measurements, operating spectral radiometers on a remotely operated vehicle (ROV) under Arctic sea ice in summer. This data set is used to produce an Arctic-wide map of light distribution under summer sea ice. Our results show that transmittance through first-year ice (FYI, 0.11) was almost three times larger than through multi-year ice (MYI, 0.04), and that this is mostly caused by the larger melt-pond coverage of FYI (42 vs. 23%). Also energy absorption was 50% larger in FYI than in MYI. Thus, a continuation of the observed sea-ice changes will increase the amount of light penetrating into the Arctic Ocean, enhancing sea-ice melt and affecting sea-ice and upper-ocean ecosystems.
Resumo:
A mathematical model has been developed for predicting the spectral distribution of solar radiation incident on a horizontal surface. The solar spectrum in the wavelength range 0.29 to 4.0 micrometers has been divided in 144 intervals. Two variables in the model are the atmospheric water vapour content and atmospheric turbidity. After allowing for absorption and scattering in the atmosphere, the spectral intensity of direct and diffuse components of radiation are computed. When the predicted radiation levels are compared with the measured values for the total radiation and the values with glass filters RG715, RG630 and OG530, a close agreement (± 5%) has been achieved under clear sky conditions. A solar radiation measuring facility, close to the centre of Birmingham, has been set up utilising a microcomputer based data logging system. A suite of computer programs in the BASIC programming language has been developed and extensively tested for solar radiation data, logging, analysis and plotting. Two commonly used instruments, the Eppley PSP pyranometer and the Kipp and Zonen CM5 pyranometer, have been compared under different experimental conditions. Three models for computing the inclined plane irradiation, using total and diffuse radiation on a horizontal surface, have been tested for Birmingham. The anisotropic-alI-sky model, proposed by Klucher, provides a good agreement between the measured and the predicted radiation levels. Measurements of solar spectral distribution, using glass filters, are also reported for a number of inclines facing South.
Resumo:
The spectral distribution of solar radiation was studied under different sky conditions during a 15- month period in Miami, Florida (USA), and over a latitudinal gradient at solar maximum. Spectroradiometric scans were characterized for total irradiance (300- 3000 nm) and the relative energetic and photon contributions of the following wavelength regions: UV-B (300-320nm); UV-A (320-400nm); B (400-500rim); PAR (400-700 nm); R (600-700 nm); and FR (728- 732 rim). Notable results include: (i) significantly higher UV-A energy fluxes than currently in use for laboratory experiments involving the biological effects of this bandwidth (values ranged from 33.6 to 55.4 W/m 2 in Miami over the year); (ii) marked diurnal shifts in B:R and R:FR, with elevated R:FR values in early morning: (iii) a strong correlation between R: FR and atmospheric water content; and (iv) unusually high PAR values under direct sunlight with cloudy skies (2484 ~tmot/2 per s).
Resumo:
The Atacama Desert has been pointed out as one of the places on earth where the highest surface irradiance may occur. This area is characterized by its high altitude, prevalent cloudless conditions and relatively low columns of ozone and water vapor. Aimed at the characterization of the solar spectrum in the Atacama Desert, we carried out in February-March 2015 ground-based measurements of the spectral irradiance (from the ultraviolet to the near infrared) at seven locations that ranged from the city of Antofagasta (on the southern pacific coastline) to the Chajnantor Plateau (5,100 m altitude). Our spectral measurements allowed us to retrieve the total ozone column, the precipitable water, and the aerosol properties at each location. We found that changes in these parameters, as well as the shorter optical path length at high-altitude locations, lead to significant increases in the surface irradiance with the altitude. Our measurements show that, in the range 0-5100 m altitude, surface irradiance increases with the altitude by about 27% in the infrared range, 6% in the visible range, and 20% in the ultraviolet range. Spectral measurements carried out at the Izana Observatory (Tenerife, Spain), in Hannover (Germany) and in Santiago (Chile), were used for further comparisons.
Resumo:
This paper presents the determination of a mean solar radiation year and of a typical meteorological year for the region of Funchal in the Madeira Island, Portugal. The data set includes hourly mean and extreme values for air temperature, relative humidity and wind speed and hourly mean values for solar global and diffuse radiation for the period 2004-2014, with maximum data coverage of 99.7%. The determination of the mean solar radiation year consisted, in a first step, in the average of all values for each pair hour/day and, in a second step, in the application of a five days centred moving average of hourly values. The determination of the typical meteorological year was based on Finkelstein-Schafer statistics, which allows to obtain a complete year of real measurements through the selection and combination of typical months, preserving the long term averages while still allowing the analysis of short term events. The typical meteorological year validation was carried out through the comparison of the monthly averages for the typical year with the long term monthly averages. The values obtained were very close, so that the typical meteorological year can accurately represent the long term data series. The typical meteorological year can be used in the simulation of renewable energy systems, namely solar energy systems, and for predicting the energy performance of buildings.
Resumo:
PV energy is the direct conversion of solar radiation into electricity. In this paper, an analysis of the influence of parameters such as global irradiance or temperature in the performance of a PV installation has been carried out. A PV module was installed in a building at the University of Málaga, and these parameters were experimentally determined for different days and different conditions of irradiance and temperature. Moreover, IV curves were obtained under these conditions to know the open-circuit voltage and the short-circuit current of the module. With this information, and using the first law of thermodynamics, an energy analysis was performed to determine the energy efficiency of the installation. Similarly, using the second law of thermodynamics, an exergy analysis is used to obtain the exergy efficiency. The results show that the energy efficiency varies between 10% and 12% and the exergy efficiency between 14% and 17%. It was concluded that the exergy analysis is more suitable for studying the performance, and that only electric exergy must be considered as useful exergy. This exergy efficiency can be improved if heat is removed from the PV module surface, and an optimal temperature is reached.
Resumo:
The photochemistry of pesticides triadimenol and triadimefon was studied on cellulose and beta-cyclodextrin (beta-CD) in controlled and natural conditions, using diffuse reflectance techniques and chromatographic analysis. The photochemistry of triadimenol occurs from the chlorophenoxyl moiety, while the photodegradation of triadimefon also involves the carbonyl group. The formation of 4-chlorophenoxyl radical is one of the major reaction pathways for both pesticides and leads to 4-chlorophenol. Triadimenol also undergoes photooxidation and dechlorination, leading to triadimefon and dechlorinated triadimenol, respectively. The other main reaction process of triadimefon involves alpha-cleavage from the carbonyl group, leading to decarbonylated compounds. Triadimenol undergoes photodegradation at 254 nm but was found to be stable at 313 nm, while triadimefon degradates in both conditions. Both pesticides undergo photochemical decomposition under solar radiation, being the initial degradation of rate per unit area of triadimefon 1 order of magnitude higher than the observed for triadimenol in both supports. The degradation rates of the pesticides were somewhat lower in beta-CD than on cellulose. Photoproduct distribution of triadimenol and triadimefon is similar for the different irradiation conditions, indicating an intramolecular energy transfer from the chlorophenoxyl moiety to the carbonyl group in the latter pesticide.
Resumo:
The invention relates to a variable-spectrum solar simulator for characterising photovoltaic systems. The simulator can be used to obtain a spectrum adjusted to the solar spectrum, both for a standard spectrum or a real spectrum adjusted to local irradiation conditions. The simulator also allows the spatial-angular characteristics of the sun to be reproduced. The invention comprises: a broad-spectrum light source, the flux from which is emitted through an aperture; an optical system which collimates the primary source; a system which disperses the beam chromatically; an optical system which forms an image of the dispersed primary source at a given position, at which a spatial mask is placed in order to filter the received irradiance spectrally; an optical system which captures the filtered spectrum and returns, mixes and concentrates same in a secondary source with the desired spectral, angular, and spatial characteristics; an optical system which collimates the secondary source such that it reproduces the angular characteristics of the sun; and a control system.
Resumo:
Solar radiation data is crucial for the design of energy systems based on the solar resource. Since diffuse radiation measurements are not always available in the archive data series, either due to the inexistence of measuring equipment, shading device misplacement or missing data, models to generate these data are needed. In this work, one year of hourly and daily horizontal solar global and diffuse irradiation measurements in Évora are used to establish a new relation between the diffuse radiation and the clearness index. The proposed model includes a fitting parameter, which was adjusted through a simple optimization procedure to minimize the Least Square Error as compared to measurements. A comparison against several other fitting models presented in the literature was also carried out using the Root Mean Square Error as statistical indicator, and it was found that the present model is more accurate than the previous fitting models for the diffuse radiation data in Évora.
Resumo:
A clear sky solar spectral model which describes the irradiation flux has been tested experimentally in Heredia, Costa Rica. A description of the model and comparisons with radiation data are presented. The model computes spectral fluxes of direct, diffuse and global solar irradiation incident on a horizontal surface. Necessary inputs include latitude, altitude, and surface albedo as characteristics of a location as well as the atmospheric characteristics: turbidity, precipitable water vapor, and total ozone content. The results evidence a satisfactory agreement.
Resumo:
The quality of human life depends to a large degree on the availability of energy. In recent years, photovoltaic technology has been growing extraordinarily as a suitable source of energy, as a consequence of the increasing concern over the impact of fossil fuels on climate change. Developing affordable and highly efficiently photovoltaic technologies is the ultimate goal in this direction. Dye-sensitized solar cells (DSSCs) offer an efficient and easily implementing technology for future energy supply. Compared to conventional silicon solar cells, they provide comparable power conversion efficiency at low material and manufacturing costs. In addition, DSSCs are able to harvest low-intensity light in diffuse illumination conditions and then represent one of the most promising alternatives to the traditional photovoltaic technology, even more when trying to move towards flexible and transparent portable devices. Among these, considering the increasing demand of modern electronics for small, portable and wearable integrated optoelectronic devices, Fibre Dye-Sensitized Solar Cells (FDSSCs) have gained increasing interest as suitable energy provision systems for the development of the next-generation of smart products, namely “electronic textiles” or “e-textiles”. In this thesis, several key parameters towards the optimization of FDSSCs based on inexpensive and abundant TiO2 as photoanode and a new innovative fully organic sensitizer were studied. In particular, the effect of various FDSSCs components on the device properties pertaining to the cell architecture in terms of photoanode oxide layer thickness, electrolytic system, cell length and electrodes substrates were examined. The photovoltaic performances of the as obtained FDSSCs were fully characterized. Finally, the metal part of the devices (wire substrate) was substituted with substrates suitable for the textile industry as a fundamental step towards commercial exploitation.
Resumo:
Next to conventional solar panels that harvest direct sunlight, p-type dye-sensitized solar cells (DSSCs) have been developed, which are able to harvest diffuse sunlight. Due to unwanted charge recombination events p-type DSSCs exhibit low power conversion efficiencies (PCEs). Previous research has shown that dye-redox mediator (RM) interactions can prevent these recombination events, resulting in higher PCEs. It is unknown how the nature of dye-RM interactions affects the PCEs of pseudorotaxane-based solar cells. In this research this correlation is investigated by comparing one macrocycle, the 3-NDI, in combination with the three dyes that contains a recognition sites. 2D-DOSY-NMR experiments have been conducted to evaluate the diffusion constants (LogD) of the three couple. The research project has been stopped due to the coronavirus pandemic. The continuation of this thesis would have been to synthesize a dye on the basis of the data obtained from the diffusion tests and attempt the construction of a solar cell to then evaluate its effectiveness. During my training period I synthetized new Fe(0) cyclopentadienone compounds bearing a N-Heterocyclic Carbene ligand. The aim of the thesis was to achieve water solubility by modifications of the cyclopentadienone ligand. These new complexes have been modified using a sulfonation reaction, replacing an hydroxyl with a sulfate group, on the alkyl backbone of the cyclopentadienone ligand. All the complexes were characterized with IR, ESI-MS and NMR spectroscopy, and a new Fe(0) cyclopentadienone complex, involved as an intermediate, was obtained as a single crystal and was characterized also with X-Ray spectroscopy.