910 resultados para Diabetes glucose metabolism
Resumo:
INTRODUCCIÓN: Alteraciones en el metabolismo de la glucosa son causantes de Síndrome Metabólico y diabetes en adultos mayores; la determinación de hemoglobina glucosilada es un indicador exacto de la glucemia de los individuos en los últimos tres meses permitiendo comprobar el estado de salud. OBJETIVO: Establecer la correlación entre glucosa basal y hemoglobina glucosilada y su asociación con Síndrome Metabólico en adultos mayores del cantón Cuenca. METODOLOGÍA: Estudio descriptivo en 126 adultos mayores. Para la obtención de la muestra se utilizó el calculador automático EPI INFO. De los participantes un grupo con Síndrome Metabólico cumplió el criterio de la Adult Treatment Panel (APT-III). Se aplicó una encuesta para recolección de información y se tomó muestras de sangre para determinar glucosa basal y hemoglobina glucosilada. La información obtenida se procesó en el programa SPSS versión 20.0, Excel y MedLab. Se clasificaron los valores de acuerdo a frecuencia por edad, sexo y su relación con Síndrome Metabólico. RESULTADOS: Se analizaron 126 pacientes entre 65 y 96 años, siendo más frecuentes adultos mayores de sexo femenino con 65,1%. La población con Síndrome Metabólico fue 50.8%. La media de glucosa fue 87,16 y de hemoglobina glucosilada 5,65%. Luego del análisis 92% se encontraron en el rango normal de glucemia y 92,8% de HbA1; se ubicó en el rango de prediabetes 4,8% y dentro del rango de diabetes el 2,4%. Mediante coeficiente de correlación de Pearson se determinó una correlación moderada de 0.418 entre glucemia basal y hemoglobina glucosilada. Se observó una ligera relación entre alteración del metabolismo de glucosa y Síndrome Metabólico pues 12,5% de pacientes con esta enfermedad presentaron hiperglucemia y 11% HbA1 alterada
Resumo:
Due to their permanent and close proximity to neurons, glial cells perform essential tasks for the normal physiology of the retina. Astrocytes andM¨uller cells (retinal macroglia) provide physical support to neurons and supplement them with several metabolites and growth factors.Macroglia are involved in maintaining the homeostasis of extracellular ions and neurotransmitters, are essential for information processing in neural circuits, participate in retinal glucose metabolism and in removing metabolic waste products, regulate local blood flow, induce the blood-retinal barrier (BRB), play fundamental roles in local immune response, and protect neurons from oxidative damage. In response to polyetiological insults, glia cells react with a process called reactive gliosis, seeking to maintain retinal homeostasis. When malfunctioning, macroglial cells can become primary pathogenic elements. A reactive gliosis has been described in different retinal pathologies, including age-related macular degeneration (AMD), diabetes, glaucoma, retinal detachment, or retinitis pigmentosa. A better understanding of the dual, neuroprotective, or cytotoxic effect of macroglial involvement in retinal pathologies would help in treating the physiopathology of these diseases.The extensive participation of the macroglia in retinal diseases points to these cells as innovative targets for new drug therapies.
Resumo:
Aim To further elucidate the relationship between physical activity and several risk factors for development of diabetes (glucose, C-peptide and obesity) over time. Methods A prospective longitudinal study where physical activity was measured on 199 children from Kalmar and Linköping at age 8, and the same 107 children from Linköping again at age 12. Anthropometric data was collected and blood was analyzed for C-peptide and f-glucose. The children in the study were representative for the general Swedish child population, and on an average lean. Results High physical activity was related to lower C-peptide at age 8 and 12. This correlation was especially pronounced in boys, who also were more physically active than girls at both time points. The association seen at 8 years of age was similar at age 12 in most children. Children with higher BMI Z-Score had a higher fasting C-peptide (age 12) but linear regression showed that children with more steps per day were less likely to have a higher fasting C-peptide irrespective of BMI. Longitudinal follow-up showed that a decrease in physical activity increased insulin resistance and β-cell load. Conclusions Already in young children, physical activity improves insulin sensitivity and decreases the need of C-peptide over time. This seems to become even more pronounced with increasing age when children are followed longitudinally. Low physical activity increases the load on insulin producing β-cells, might increase the risk for both type 1- and 2 diabetes.
Resumo:
Clozapine displays stronger systemic metabolic side effects than haloperidol and it has been hypothesized that therapeutic antipsychotic and adverse metabolic effects of these drugs are related. Considering that cerebral disconnectivity through oligodendrocyte dysfunction has been implicated in schizophrenia, it is important to determine the effect of these drugs on oligodendrocyte energy metabolism and myelin lipid production. Effects of clozapine and haloperidol on glucose and myelin lipid metabolism were evaluated and compared in cultured OLN-93 oligodendrocytes. First, glycolytic activity was assessed by measurement of extra- and intracellular glucose and lactate levels. Next, the expression of glucose (GLUT) and monocarboxylate (MCT) transporters was determined after 6 and 24 h. And finally mitochondrial respiration, acetyl-CoA carboxylase, free fatty acids, and expression of the myelin lipid galactocerebroside were analyzed. Both drugs altered oligodendrocyte glucose metabolism, but in opposite directions. Clozapine improved the glucose uptake, production and release of lactate, without altering GLUT and MCT. In contrast, haloperidol led to higher extracellular levels of glucose and lower levels of lactate, suggesting reduced glycolysis. Antipsychotics did not alter significantly the number of functionally intact mitochondria, but clozapine enhanced the efficacy of oxidative phosphorylation and expression of galactocerebroside. Our findings support the superior impact of clozapine on white matter integrity in schizophrenia as previously observed, suggesting that this drug improves the energy supply and myelin lipid synthesis in oligodendrocytes. Characterizing the underlying signal transduction pathways may pave the way for novel oligodendrocyte-directed schizophrenia therapies.
Resumo:
OBJETIVO: Este estudo comparou parâmetros antropométricos e de resistência à insulina de indivíduos sem e com síndrome metabólica (SM), subestratificados pela presença de anormalidades glicêmicas. SUJEITOS E MÉTODOS: Foram incluídos 454 indivíduos (66% mulheres, 54% brancos), sendo 155 alocados para o grupo 1 (sem SM, sem anormalidade glicêmica), 32 para o grupo 2 (sem SM, com anormalidade glicêmica), 104 no grupo 3 (com SM, sem anormalidade glicêmica) e 163 no grupo 4 (com SM e anormalidade glicêmica). Os grupos foram comparados por ANOVA. RESULTADOS: Os grupos com SM (3 e 4) apresentaram os piores perfis antropométrico e lipídico; no grupo 2, apesar de glicemias significantemente mais elevadas, as médias das variáveis antropométricas e lipídicas não diferiram do grupo 1. Os maiores valores médios de HOMA-IR foram encontrados nos grupos com SM, enquanto o grupo 2 apresentou o menor HOMA-β. A trigliceridemia foi a variável metabólica com coeficientes de correlação mais elevados com a antropometria. Porém, as correlações mais fortes foram da circunferência da cintura (r = 0,503) e da razão cintura-altura (r = 0,513) com o HOMA-IR (p < 0,01). CONCLUSÃO: Nossos achados revelam que, em amostra da população brasileira, qualquer das medidas antropométricas identifica indivíduos com SM, mas não parece capaz de diferenciar aqueles com distúrbio glicêmico. Reforçamos a relação mais forte das medidas de adiposidade central com resistência à insulina, sugerindo utilidade da razão cintura-altura. É possível que componente autoimune contribua para o comprometimento do metabolismo glicídico dos indivíduos do grupo 2.
Resumo:
Background: Ezetimibe specifically blocks the absorption of dietary and biliary cholesterol and plant sterols. Synergism of ezetimibe-statin therapy on LDL-cholesterol has been demonstrated, but data concerning the pleiotropic effects of this combination are controversial. Objective: This open-label trial evaluated whether the combination of simvastatin and ezetimibe also results in a synergistic effect that reduces the pro-inflammatory status of pre-diabetic subjects. Methods: Fifty pre-diabetic subjects were randomly assigned to one of 2 groups, one receiving ezetimibe (10 mg/day), the other, simvastatin (20 mg/d) for 12 weeks, followed by an additional 12-week period of combined therapy. Blood samples were collected at baseline, 12 and 24 weeks. RESULTS: Total cholesterol, LDL-cholesterol and apolipoprotein B levels decreased in all the periods analyzed (p < 0.01), but triglycerides declined significantly only after combined therapy. Both drugs induced reductions in C-reactive protein, reaching statistical significance after combining ezetimibe with the simvastatin therapy (baseline 0.59 +/- 0.14, simvastatin monotherapy 0.48 +/- 0.12 mg/dL and 0.35 +/- 0.12 mg/dL, p < 0.023). Such a reduction was independent of LDL-cholesterol change. However, mean levels of TNF-alpha and interleukin-6 and leukocyte count did not vary during the whole study. Conclusion: Expected synergistic lowering effects of a simvastatin and ezetimibe combination on LDL-cholesterol, apolipoprotein B and triglycerides levels were confirmed in subjects with early disturbances of glucose metabolism. We suggest an additive effect of this combination also on inflammatory status based on the reduction of C-reactive protein. Attenuation of pro-inflammatory conditions may be relevant in reducing cardiometabolic risk.
Resumo:
Dermcidin (DCD) is a human gene mapped to chromosome 12q13 region, which is co-amplified with multiple oncogenes with a well-established role in the growth, survival and progression of breast cancers. Here, we present a summary of a DNA microarray-based study that identified the genes that are up- and down-regulated in a human MDA-361 pLKO control clone and three clones expressing short hairpin RNA against three different regions of DCD mRNA. A list of 235 genes was differentially expressed among independent clones (> 3-fold change and P < 0.005). The gene expression of 208 was reduced and of 27 was increased in the three DCD-RNAi clones compared to pLKO control clone. The expression of 77 genes (37%) encoding for enzymes involved in amino acid metabolism, glucose metabolism and oxidoreductase activity and several genes required for cell survival and DNA repair were decreased. The expression of EGFR/ErbB-1 gene, an important predictor of outcome in breast cancer, was reduced together with the genes for betacellulin and amphiregulin, two known ligands of EGFR/ErbB receptors. Many of the 27 genes up-regulated by DCD-RNAi expression have not yet been fully characterized; among those with known function, we identified the calcium-calmodulin-dependent protein kinase-II delta and calcineurin A alpha. We compared 132 up-regulated and 12 down-regulated genes in our dataset with those genes up- and down-regulated by inhibitors targeting various signaling pathway components. The analysis showed that the genes in the DCD pathway are aligned with those functionally influenced by the drugs sirolimus, LY-294002 and wortmannin. Therefore, DCD may exert its function by activating the PI3K/AKT/mTOR signaling pathway. Together, these bioinformatic approaches suggest the involvement of DCD in the regulation of genes for breast cancer cell metabolism, proliferation and survival.
Resumo:
Objectives To compare carotid intima-media thickness (cIMT) of children and adolescents with and without HIV infection and to determine associations among independent socio-demographic, clinical or cardiovascular variables and cIMT in HIV-infected children and adolescents. Patients and methods This is a matched case-control study comparing 83 HIV-infected and 83 healthy children and adolescents. Clinical and laboratorial parameters, cIMT and echocardiogram were measured. Results The cIMT was higher in HIV-infected individuals (median 480 mu m; interquartile range 463-518 mu m) compared with controls (426 mu m; range 415-453 mu m, P < 0.001). In addition, the HIV-infected group showed higher levels of high-sensitive C-reactive protein (medians 1.0 mg/l vs. 0.4 mg/l, P < 0.001), glycated hemoglobin (6.1 +/- 0.9 vs. 5.7 +/- 0.8%, P= 0.028) and triglycerides (medians 0.9 vs. 0.8 mmol/l, P= 0.031). Finally, this group showed lower levels of total and high-density lipoprotein-cholesterol. After multivariate analysis, increased cIMT was positively associated with stavudine use [odds ratio (OR): 18.9, P=0.005], left atrial/aorta index (OR: 15.6, P=0.019), suprailiac skinfold (OR: 7.9, P=0.019), tachypnea (OR: 5.9, P=0.031), CD8 lymphocyte count (OR: 5.7, P=0.033) and CD4 T-lymphocyte count (OR: 5.5, P=0.025). cIMT increment was negatively associated with total cholesterol (OR: 0.2, P=0.025) and with CD8 zenith (OR: 0.1, P=0.007). Conclusion In this sample of children and adolescents, having HIV infection was associated with increased cIMT and elevated prevalence of cardiovascular risk factors. These findings suggest that this group should be included in cardiovascular prevention programs.
Resumo:
Three carbohydrate conjugated dipicolylamine chelators, 2-bis(2-pyridinylmethyl)amino)ethyl 1-deoxy-1-thio-beta-D-glucopyranoside (L(1)), 2-bis(2-pyridinylmethyl)amino)ethyl-beta-D-glucopyranoside (L(2)), and 2-bis(2-pyridinylmethyl)amino)carboxamide-N-(2-amino-2-deoxy-D-glucopyranose) (L(3)) were complexed to the [M(Co)(3)](+) core (M=Tc, Re) and the properties of the resulting complexes were investigated. Synthesis and characterization of the chelator 2-bis(2-pyridinylmethyl)amino)ethyl 1-deoxy-1-thio-beta-D-glucopyranoside (L(1)) and the corresponding Re complex are reported. All chelators were radiolabeled in high yield with [(99)mTc(CO)(3)(H(2)O)(3)](+) ( > 98%) and [(186)Re(CO)(3)(H(2)O)(3)](+) ( > 80%). The chelators and Re-complexes were determined to not be substrates for the glucose metabolism enzyme hexokinase. However, the biodistribution of each of the (99m)Tc complexes demonstrated fast clearance from most background tissue, including >75% clearance of the activity in the kidneys and the liver within 2 h post-injection. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Recent theories of panic disorder propose an extensive involvement of limbic system structures, such as the hippocampus, in the pathophysiology of this condition. Despite this, no prior study has examined exclusively the hippocampal neurochemistry in this disorder. The current study used proton magnetic resonance spectroscopy imaging ((1)H-MRSI) to examine possible abnormalities in the hippocampus in panic disorder patients. Participants comprised 25 panic patients and 18 psychiatrically healthy controls. N-acetylaspartate (NAA, a putative marker of neuronal viability) and choline (Cho, involved in the synthesis and degradation of cell membranes) levels were quantified relative to creatine (Cr, which is thought to be relatively stable among individuals and in different metabolic condition) in both right and left hippocampi. Compared with controls, panic patients demonstrated significantly lower NAA/Cr in the left hippocampus. No other difference was detected. This result is consistent with previous neuroimaging findings of hippocampal alterations in panic and provides the first neurochemical evidence suggestive of involvement of this structure in the disorder. Moreover, lower left hippocampal NAA/Cr in panic disorder may possibly reflect neuronal loss and/or neuronal metabolic dysfunction, and could be related to a deficit in evaluating ambiguous cues. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
BACKGROUND AND PURPOSE: Functional brain variability has been scarcely investigated in cognitively healthy elderly subjects, and it is currently debated whether previous findings of regional metabolic variability are artifacts associated with brain atrophy. The primary purpose of this study was to test whether there is regional cerebral age-related hypometabolism specifically in later stages of life. MATERIALS AND METHODS: MR imaging and FDG-PET data were acquired from 55 cognitively healthy elderly subjects, and voxel-based linear correlations between age and GM volume or regional cerebral metabolism were conducted by using SPM5 in images with and without correction for PVE. To investigate sex-specific differences in the pattern of brain aging, we repeated the above voxelwise calculations after dividing our sample by sex. RESULTS: Our analysis revealed 2 large clusters of age-related metabolic decrease in the overall sample, 1 in the left orbitofrontal cortex and the other in the right temporolimbic region, encompassing the hippocampus, the parahippocampal gyrus, and the amygdala. The division of our sample by sex revealed significant sex-specific age-related metabolic decrease in the left temporolimbic region of men and in the left dorsolateral frontal cortex of women. When we applied atrophy correction to our PET data, none of the above-mentioned correlations remained significant. CONCLUSIONS: Our findings suggest that age-related functional brain variability in cognitively healthy elderly individuals is largely secondary to the degree of regional brain atrophy, and the findings provide support to the notion that appropriate PVE correction is a key tool in neuroimaging investigations.
Resumo:
Obstructive sleep apnea (OSA) is recurrent obstruction of the upper airway leading to sleep fragmentation and intermittent hypoxia (IH) during sleep. There is growing evidence from animal models of OSA that IH is independently associated with metabolic dysfunction, including dyslipidemia and insulin resistance. The precise mechanisms by which IH induces metabolic disturbances are not fully understood. Over the last decade, several groups of investigators developed a rodent model of IH, which emulates the oxyhemoglobin profile in human USA. In the mouse model, IH induces dyslipidemia, insulin resistance and pancreatic endocrine dysfunction, similar to those observed in human USA. Recent reports provided new insights in possible mechanisms by which IH affects lipid and glucose metabolism. IH may induce dyslipidemia by up-regulating lipid biosynthesis in the liver, increasing adipose tissue lipolysis with subsequent free fatty acid flux to the liver, and inhibiting lipoprotein clearance. IH may affect glucose metabolism by inducing sympathetic activation, increasing systemic inflammation, increasing counter-regulatory hormones and fatty acids, and causing direct pancreatic beta-cell injury. IH models of USA have improved our understanding of the metabolic impact of USA, but further studies are needed before we can translate recent basic research findings to clinical practice. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND AND PURPOSE: Several morphometric MR imaging studies have investigated age- and sex-related cerebral volume changes in healthy human brains, most often by using samples spanning several decades of life and linear correlation methods. This study aimed to map the normal pattern of regional age-related volumetric reductions specifically in the elderly population. MATERIALS AND METHODS: One hundred thirty-two eligible individuals (67-75 years of age) were selected from a community-based sample recruited for the Sao Paulo Ageing and Health (SPAH) study, and a cross-sectional MR imaging investigation was performed concurrently with the second SPAH wave. We used voxel-based morphometry (VBM) to conduct a voxelwise search for significant linear correlations between gray matter (GM) volumes and age. In addition, region-of-interest masks were used to investigate whether the relationship between regional GM (rGM) volumes and age would be best predicted by a nonlinear model. RESULTS: VBM and region-of-interest analyses revealed selective foci of accelerated rGM loss exclusively in men, involving the temporal neocortex, prefrontal cortex, and medial temporal region. The only structure in which GM volumetric changes were best predicted by a nonlinear model was the left parahippocampal gyrus. CONCLUSIONS: The variable patterns of age-related GM loss across separate neocortical and temporolimbic regions highlight the complexity of degenerative processes that affect the healthy human brain across the life span. The detection of age-related Ill GM decrease in men supports the view that atrophy in such regions should be seen as compatible with normal aging.
Resumo:
Background: Obsessive-compulsive disorder (OCD) is a clinically heterogenous disorder characterized by temporally stable symptom dimensions. Past inconsistent results from structural neuroimaging studies of OCD may have resulted from the effects of these specific symptom dimensions as well as other socio-demographic and clinical variables upon gray matter (GM) volume. Methods: GM volume was measured in 25 adult OCD patients and 20 adult healthy controls using voxel-based morphometry (VBM), controlling for age and total brain GM volume. Univariate and multivariate regression analyses were carried out between regions of GM difference and age, age of onset, medication load, OCD severity, depression severity, and separate symptom dimension scores. Results: Significant GM volumetric differences in OCD patients relative to controls were found in dorsal cortical regions, including bilateral BA6, BA46, BA9 and right BA8 (controls > patients), and bilateral midbrain (patients > controls). Stepwise regression analyses revealed highly significant relationships between greater total OCD symptom severity and smaller GM volumes in dorsal cortical regions and larger GM volumes in bilateral midbrain. Greater age was independently associated with smaller GM volumes in right BA6, left BA9, left BA46 and larger GM volumes in right midbrain. Greater washing symptom severity was independently associated with smaller GM volume in right BA6, while there was a trend association between greater hoarding symptom severity and lower GM volume in left BA6. Limitations: The sample was relatively small to examine the relationship between symptom scores and GM volumes. Multiple patients were taking medication and had comorbid disorders. Conclusions: These analyses suggest dorsal prefrontal cortical and bilateral midbrain GM abnormalities in OCD that appear to be primarily driven by the effects of total OCD symptom severity. The results regarding the relationship between GM volumes and symptom dimension scores require examination in larger samples. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Objective: To investigate pathophysiological factors underlying the presence of interictal hyper-perfusion within the limits of the polymicrogyric (PMG) cortex in epileptic patients. Methods: Retrospective observational study on interictal perfusion by Single Photon Emission Computed Tomography (SPECT) in 16 patients with PMG and its correlations with a number of clinical and neurophysiological variables. Patients underwent video-EEG monitoring, neurological and psychiatric assessments, invasive EEG, and the interictal SPECT coregistered to Magnetic Resonance Imaging (MRI). Results: Patients with interictal hyperperfusion within the PMG cortex had a significantly higher spike rate on interictal EEG than patients with normal perfusion. Interictal hyperperfusion was not correlated to sex, age at epilepsy onset, age at evaluation, number of seizures per month, presence of initial precipitating insult (IPI), abnormal neurological examination, EEG findings, ictal serniology, and seizure outcome. The high interictal spike rate did not correlate to a high frequency of seizures per month. Conclusions: Our work provides further evidences for an intrinsic epileptogenesis of the PMG cortex during the interictal state, which accounts for the major rote of PMG tissue in seizure generation. These results might help to increase our understanding about epileptogenesis related to the PMG cortex, providing new toots for more tailored epilepsy surgery in PMG patients. (c) 2008 Elsevier B.V. All rights reserved.