952 resultados para Depth of cut
Resumo:
The present study examined the relationship between depth of defense interpretations by therapists, and patient defensive functioning, on the therapeutic alliance in a sample of 36 patients undergoing short-term dynamic psychotherapy. Defense interpretation depth was defined as the degree to which therapist interpretations contained information regarding the motivation for patient defenses and historical origins of the defensive processes (Greensen, 1967). Mean depth of interpretation was compared between sessions that were identified beforehand as either high-alliance or low-alliance sessions using the Helping Alliance Questionnaire (HAq-II: Luborsky et al., 1996). Results indicated that defensive functioning was correlated to defense interpretation depth in low-alliance sessions. Moreover, mean depth of interpretation was also higher in low-alliance sessions, pointing to the possible "destabilizing" effects that these interpretations may have on both defensive functioning and the therapeutic alliance. These results are discussed within the context of previous studies of therapeutic technique in dynamic psychotherapy.
Resumo:
The purpose of this work was evaluating the energetic demand of a seeder-fertilizer machine as a function of the type and handling of vegetal covering culture and of the fertilizer deposition shank depth. A Valtra BM100 tractor was used implemented to pull a high precision seeder-fertilizer machine with four ranks of seeding, spaced 0.9 m for maize culture. Experiment was conducted with design in randomized blocks in factorial plots, in the Laboratory of Machines and Agricultural Mechanization experimental area (LAMMA) of UNESP-Jaboticabal, using two covering cultures (black-mucuna and crotalaria), three handlings of this covering, two mechanical (straw crusher and roller knife) and one chemical (pulverization of herbicide), performed 120 days after seeding of covering cultures and three depths of fertilizer deposition shank, completing 18 treatments, with four repetitions, totaling 72 observations. Parameters of displacement speed, gliding, force on traction bar, peak force, power on pulling bar and fuel consumption were evaluated. It was possible to conclude that force on traction bar was less for depths of 0.11 and 0.14 m of fertilizer plough shank, the same occurring for peak force, power on traction bar and volumetric consumption. The specific consumption was lower at a depth of 0.17 m of fertilizer plough shank. Covering cultures and their handlings did not interfere in the performance of machines under inquiry.
Resumo:
Adult Lymnaea acuminata (average length 20-22 mm) were collected locally from lakes and low-lying submerged fields from Gorakhpur. The chemoattraction studies were made in round glass aquaria measuring 30 cm in diameter and filled to a depth of 10 mm with 500 ml dechlorinated tap water. Each aquarium was divided into four concentric zones. At the starting time of the assay 10 snails were placed on the circumference of outermost zone 0. Snail attractant pellets (SAP) were added simultaneously in the center of central zone 3. SAP of different amino acids were prepared at concentrations of 10, 20, 50, 80 and 100 mM/2% agar solution and, subsequently, spread to a uniform thickness of 5 mm. After cooling, SAP were cut in small pieces of 5 mm in diameter. Lymnaea acuminata's attraction to amino acids was studied using different amino acid concentrations in SAP. Pellets containing amino acids with non-polar R groups (proline and tryptophan), a charged polar group (arginine) and uncharged polar R groups (serine, citrulline and asparagine) were tested. The snails were more attracted to the uncharged polar R group amino acid serine than to other groups of amino acids. The preferred amino acid concentration was 80 mM. The attraction of snails to different amino acids was concentration dependent. Snails could discriminate amongst the different amino acids at > or = 50 mM.
Resumo:
This paper analyses the cut flower market as an example of an invasion pathway along which species of non-indigenous plant pests can travel to reach new areas. The paper examines the probability of pest detection by assessing information on pest detection and detection effort associated with the import of cut flowers. We test the link between the probability of plant pest arrivals as a precursor to potential invasion, and volume of traded flowers using count data regression models. The analysis is applied to the UK import of specific genera of cut flowers form Kenya between 1996 and 2004. There is a link between pest detection and the Genus of cut flower imported. Hence, pest detection efforts should focus on identifying and targeting those imported plants with a high risk of carrying pest species. For most of the plants studied efforts allocated to inspection have a significant influence on the probabilty of pest detction. However, by better targetting inspection efforts, it is shown that plant inspection effort could be reduced without increasing the risk of pest entry. Similarly, for most of the plants analysed, an increase in volume traded will not necessarily lead to an increase in the number of pests entering the UK. For some species, such as conclude that analysis at the rank of plant Genus is important both to understand the effectiveness of plant pest detection efforts and consequently to manage the risk of introduction of non-indigenous species.
Resumo:
Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other spaceborne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so one must first calibrate the reflected solar radiation received by the photon-counting detectors of the GLAS 532-nm channel, the primary channel for atmospheric products. Solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (i) calibration with coincident airborne and GLAS observations, (ii) calibration with coincident Geostationary Opera- tional Environmental Satellite (GOES) and GLAS observations of deep convective clouds, and (iii) cali- bration from first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retriev- als is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.
Resumo:
Pulsed lidars are commonly used to retrieve vertical distributions of cloud and aerosol layers. It is widely believed that lidar cloud retrievals (other than cloud base altitude) are limited to optically thin clouds. Here, we demonstrate that lidars can retrieve optical depths of thick clouds using solar background light as a signal, rather than (as now) merely a noise to be subtracted. Validations against other instruments show that retrieved cloud optical depths agree within 10%–15% for overcast stratus and broken clouds. In fact, for broken cloud situations, one can retrieve not only the aerosol properties in clear-sky periods using lidar signals, but also the optical depth of thick clouds in cloudy periods using solar background signals. This indicates that, in general, it may be possible to retrieve both aerosol and cloud properties using a single lidar. Thus, lidar observations have great untapped potential to study interactions between clouds and aerosols.
Resumo:
We test the response of the Oxford-RAL Aerosol and Cloud (ORAC) retrieval algorithm for MSG SEVIRI to changes in the aerosol properties used in the dust aerosol model, using data from the Dust Outflow and Deposition to the Ocean (DODO) flight campaign in August 2006. We find that using the observed DODO free tropospheric aerosol size distribution and refractive index increases simulated top of the atmosphere radiance at 0.55 µm assuming a fixed erosol optical depth of 0.5 by 10–15 %, reaching a maximum difference at low solar zenith angles. We test the sensitivity of the retrieval to the vertical distribution f the aerosol and find that this is unimportant in determining simulated radiance at 0.55 µm. We also test the ability of the ORAC retrieval when used to produce the GlobAerosol dataset to correctly identify continental aerosol outflow from the African continent and we find that it poorly constrains aerosol speciation. We develop spatially and temporally resolved prior distributions of aerosols to inform the retrieval which incorporates five aerosol models: desert dust, maritime, biomass burning, urban and continental. We use a Saharan Dust Index and the GEOS-Chem chemistry transport model to describe dust and biomass burning aerosol outflow, and compare AOD using our speciation against the GlobAerosol retrieval during January and July 2006. We find AOD discrepancies of 0.2–1 over regions of intense biomass burning outflow, where AOD from our aerosol speciation and GlobAerosol speciation can differ by as much as 50 - 70 %.
Resumo:
The importance of managing land to optimise carbon sequestration for climate change mitigation is widely recognised, with grasslands being identified as having the potential to sequester additional carbon. However, most soil carbon inventories only consider surface soils, and most large scale surveys group ecosystems into broad habitats without considering management intensity. Consequently, little is known about the quantity of deep soil carbon and its sensitivity to management. From a nationwide survey of grassland soils to 1 m depth, we show that carbon in grasslands soils is vulnerable to management and that these management effects can be detected to considerable depth down the soil profile, albeit at decreasing significance with depth. Carbon concentrations in soil decreased as management intensity increased, but greatest soil carbon stocks (accounting for bulk density differences), were at intermediate levels of management. Our study also highlights the considerable amounts of carbon in sub-surface soil below 30cm, which is missed by standard carbon inventories. We estimate grassland soil carbon in Great Britain to be 2097 Tg C to a depth of 1 m, with ~60% of this carbon being below 30cm. Total stocks of soil carbon (t ha-1) to 1 m depth were 10.7% greater at intermediate relative to intensive management, which equates to 10.1 t ha-1 in surface soils (0-30 cm), and 13.7 t ha-1 in soils from 30-100 cm depth. Our findings highlight the existence of substantial carbon stocks at depth in grassland soils that are sensitive to management. This is of high relevance globally, given the extent of land cover and large stocks of carbon held in temperate managed grasslands. Our findings have implications for the future management of grasslands for carbon storage and climate mitigation, and for global carbon models which do not currently account for changes in soil carbon to depth with management.
Resumo:
Terrain following coordinates are widely used in operational models but the cut cell method has been proposed as an alternative that can more accurately represent atmospheric dynamics over steep orography. Because the type of grid is usually chosen during model implementation, it becomes necessary to use different models to compare the accuracy of different grids. In contrast, here a C-grid finite volume model enables a like-for-like comparison of terrain following and cut cell grids. A series of standard two-dimensional tests using idealised terrain are performed: tracer advection in a prescribed horizontal velocity field, a test starting from resting initial conditions, and orographically induced gravity waves described by nonhydrostatic dynamics. In addition, three new tests are formulated: a more challenging resting atmosphere case, and two new advection tests having a velocity field that is everywhere tangential to the terrain following coordinate surfaces. These new tests present a challenge on cut cell grids. The results of the advection tests demonstrate that accuracy depends primarily upon alignment of the flow with the grid rather than grid orthogonality. A resting atmosphere is well-maintained on all grids. In the gravity waves test, results on all grids are in good agreement with existing results from the literature, although terrain following velocity fields lead to errors on cut cell grids. Due to semi-implicit timestepping and an upwind-biased, explicit advection scheme, there are no timestep restrictions associated with small cut cells. We do not find the significant advantages of cut cells or smoothed coordinates that other authors find.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O trabalho teve por objetivo avaliar a demanda energética de uma semeadora-adubadora, em função do tipo e manejo da cultura de cobertura vegetal e da profundidade da haste de deposição de adubo. Foi utilizado um trator Valtra BM100, instrumentado, para tracionar uma semeadora-adubadora de precisão equipada com quatro fileiras de semeadura espaçadas de 0,9 m para cultura de milho. O experimento foi conduzido em parcelas subsubdivididas, na área experimental do Laboratório de Máquinas e Mecanização Agrícola (LAMMA) da UNESP-Jaboticabal, utilizando duas culturas de cobertura (mucuna-preta e crotalária), três manejos dessas coberturas, sendo dois mecânicos (triturador de palhas e rolo-faca) e um químico (pulverização com herbicida), realizados 120 dias após a semeadura das culturas de cobertura e três profundidades da haste de deposição do adubo (0,11; 0,14 e 0,17 m), perfazendo 18 tratamentos, com quatro repetições, totalizando 72 observações. Foram avaliados os parâmetros velocidade de deslocamento, patinagem, força na barra de tração, força de pico, potência na barra de tração, potência de pico e consumo de combustível. Pôde-se concluir que a força na barra de tração foi menor para as profundidades de 0,11 e 0,14 m da haste sulcadora de adubo, o mesmo ocorrendo para força de pico, potência na barra de tração e consumo volumétrico. O consumo específico foi menor na profundidade de 0,17 m da haste sulcadora de adubo. As culturas de cobertura e seus manejos não interferiram no desempenho das máquinas estudadas.
Resumo:
Aim: The apical sealing ability of three different endodontic sealers was evaluated in extracted teeth using dye penetration. Methodology: The root canals of 99 extracted human maxillary central incisors were prepared sequentially 2 mm beyond the apical foramen with a size 55 Nitiflex file. The teeth were divided into three experimental groups and obturated by lateral condensation of cold gutta-percha and one of the following sealers: group 1, zinc oxide and eugenol sealer (Fill Canal); group 2, glass ionomer sealer (Ketac-Endo) and group 3, epoxy resin sealer (AH Plus). The teeth were covered with nail varnish to within 1 mm of the apical foramen and immersed in 2% methylene blue in a reduced pressure environment for 24h. After this period, the teeth were washed and cut longitudinally for apical leakage analysis. The values were obtained from the maximum depth of leakage as well as the average between the maximum and minimum values observed for each group. Results: Statistical evaluation of the results showed no significant difference in the leakage between Fill Canal and Ketac-Endo (P > 0.05). Leakage with AH Plus was significantly less (P < 0.01) than with the other sealers. Conclusions: All three sealers allowed some leakage to occur. Leakage with AH Plus was significantly different than with Fill Canal or Ketac-Endo.
Resumo:
Calathea louisae is an herbaceous ornamental plant native of Brazil whose cut foliage has potential to be used as a new product for the local ornamental market, as well as the international market, due to its decorative dark green leaves with greenish white splotches along midrib, and purple undersides. The objective of this study was to evaluate pulse treatments of benzyladenine and gibberellic acid for maintaining quality and extending keepability of foliage. The experiment was conducted in a complete randomized design with three replications (three stems in each vase) and seven treatments: distilled water (control) and pulsing cut petioles in benzyladenine or gibberellic acid for 4 h at 100, 250 and 500 mg L-1. The senescence symptoms were characterized by leaf rolling and a decrease in the angle formed between leaf and petiole as a response to water stress. Gibberellic acid or benzyladenine pulse treatments (250 and 500 mg L-1) significantly extended the longevity of cut foliage compared to the control. Gibberellic acid pulse (250 and 500 mg L-1) maintained leaves' green coloration and brightness for a longer time compared to control and benzyladenine pulse. Pulsing with gibberellic acid or benzyladenine (at all tested concentrations) maintained upright leaves for a longer time, showing a significantly higher angle between leaf and petiole compared to control. Foliage pulsed with gibberellic acid (500 mg L-1) showed a significantly higher leaf relative water content, a significantly smaller loss of accumulated fresh mass percentage compared to control and other gibbberellic acid and benzyladenine treatments.
Resumo:
During gray cast iron cutting, the great rate of mechanical energy from cutting forces is converted into heat. Considerable heat is generated, principally in three areas: the shear zone, rake face and at the clearance side of the cutting edge. Excessive heat will cause undesirable high temperature in the tool which leads to softening of the tool and its accelerated wear and breakage. Nowadays the advanced ceramics are widely used in cutting tools. In this paper a composition special of Si3N4 was sintering, characterized, cut and ground to make SNGN120408 and applyed in machining gray cast iron with hardness equal 205 HB in dry cutting conditions by using digital controlled computer lathe. The tool performance was analysed in function of cutting forces, flank wear, temperature and roughness. Therefore metal removing process is carried out for three different cutting speeds (300 m/min, 600 m/min, and 800 m/min), while a cutting depth of 1 mm and a feed rate of 0.33 mm/rev are kept constant. As a result of the experiments, the lowest main cutting force, which depends on cutting speed, is obtained as 264 N at 600 m/min while the highest main cutting force is recorded as 294 N at 300 m/min.