981 resultados para Dental Enamel Hypoplasia
Resumo:
The frequency of dental abnormalities, such as delayed dental development, microdontia, hypoplasia, agenesis, V-shaped root and shortened root was evaluated in 76 acute lymphoblastic leukemia (ALL) pediatric patients who had been off chemotherapy for 6 months. These children had been subjected to one of the three Brazilian Protocols or the BFM86 Protocol. The patients were divided into three groups: Group I (GI; high risk) treated with one of the three Brazilian Protocols who received high-dose chemotherapy, intensive maintenance and cranial radiotherapy; Group II (GII; low risk) who were also treated with one of the three Brazilian Protocols using low-intensive chemotherapy with no radiotherapy; and Group III (GIII) based on the BFM86 Protocol.Of 76 children, 13 showed no dental abnormalities (8 were at the age of tooth formation). The remaining 63 children (82.9%) showed at least one dental anomaly.The abnormalities were probably caused by the type, intensity, frequency of the treatment and age of the patients at ALL diagnosis and this might have important consequences for the children's dental development. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
In situ evaluation of a home bleaching agent on sound and demineralizated human enamel microhardness
Resumo:
Synchrotron microtomography is a tool to quantify the mineralization of dental tissues as well as microhardness analysis, since they provide adequate precision and contrast sensitivity. This study evaluates synchrotron microtomography and microhardness analysis for quantifying the mineral content of bovine enamel. Fifty enamel blocks were submitted individually for 5 days to a pH-cycling model at 37 degrees C and remained in the remineralizing solution for 2 days. The blocks were treated twice daily for 1 min with NaF dentifrices (Placebo, 275, 550, 1,100 mu g F/g and Crest (R)) diluted in deionized water. Surface microhardness changes (%SMH) and mineral loss (Delta Z) were then calculated. Synchrotron microtomography was also used to measure total mineral lost (SMM). Pearson's correlation (p < 0.05) was used to determine the relationship between different methods of analysis and dose-response between treatments. Dentifrice fluoride concentration and %SMH and Delta Z were correlated (p < 0.05). There was a positive relationship (p < 0.05) when comparing SMM vs. Delta Z; a negative relationship (p < 0.05) was found for %SMH vs. SMM and %SMH vs. Delta Z. Based on the results of this study, it was possible to conclude that synchrotron microtomography provides the best spatial resolution and contrast sensitivity for quantifying mineral gradients.
Resumo:
Objectives: This in situ/ex vivo study evaluated whether a rinse with an iron solution could reduce wear and the percentage of microhardness change of human enamel and dentine submitted to erosion followed by brushing after 1 or 30 min.Design: During 2 experimental 5-day crossover phases (wash-out period of 10 days), 10 volunteers wore intraoral palatal devices, with 12 specimens (6 of enamel and 6 of dentine) arranged in 3 horizontal rows (4 specimens each). In one phase, the volunteers immersed the device for 5 min in 150 mL of cola drink, 4 times a day. Immediately after immersion, no treatment was performed in one row. The other row was brushed after 1 min using a fluoride dentifrice and the device was replaced into mouth. After 30 min, the remaining row was brushed. In the other phase, the procedures were repeated, but after immersion the volunteers rinsed for 1 min with 10 mL of a 10 mM ferrous sulphate solution. Changes in surface microhardness (%SMH) and wear (profilometry) of enamel and dentine were measured. Data were tested using ANOVA and Tukey's tests (p < 0.05).Results: the enamel presented more wear than dentine, under all experimental conditions. The iron solution caused a significant reduction on the %SMH in enamel, and a significant reduction on the wear in dentine, regardless the other conditions.Conclusions: Rinsing with an iron solution after an erosive attack, followed or not by an abrasive episode, may be a viable alternative to reduce the loss of dental structure. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the amount of peroxide passage from the pulp chamber to the external enamel surface during the internal bleaching technique. Fifty bovine teeth were sectioned transversally 5 mm below the cemento-enamel junction (CEJ), and the remaining part of the root was sealed with a 2-mm layer of glass ionomer cement. The external surface of the samples was coated with nail varnish, with the exception of standardized circular areas (6-mm diameter) located on the enamel, exposed dentin, or cementum surface of the tooth. The teeth were divided into three experimental groups according to exposed areas close to the CEJ and into two control groups (n=10/group), as follows: GE, enamel exposure area; GC, cementum exposed area; GD, dentin exposed area; Negative control, no presence of internal bleaching agent and uncoated surface; and Positive control, pulp chamber filled with bleaching agent and external surface totally coated with nail varnish. The pulp chamber was filled with 35% hydrogen peroxide (Opalescence Endo, Ultradent). Each sample was placed inside of individual flasks with 1000 mu L of acetate buffer solution, 2 M (pH 4.5). After seven days, the buffer solution was transferred to a glass tube, in which 100 mu L of leuco-crystal violet and 50 mu L of horseradish peroxidase were added, producing a blue solution. The optical density of the blue solution was determined by spectrophotometer and converted into microgram equivalents of hydrogen peroxide. Data were submitted to Kruskal-Wallis and Dunn-Bonferroni tests (alpha=0.05). All experimental groups presented passage of peroxide to the external surface that was statistically different from that observed in the control groups. It was verified that the passage of peroxide was higher in GD than in GE (p<0.01). The GC group presented a significantly lower peroxide passage than did GD and GE (p<0.01). It can be concluded that the hydrogen peroxide placed into the pulp chamber passed through the dental hard tissues, reaching the external surface and the periodontal tissue. The cementum surface was less permeable than were the dentin and enamel surfaces.