992 resultados para Demanda crescente
Resumo:
Foi avaliado o consumo energético das operações mecanizadas envolvidas na produção de silagem de planta inteira e silagem de grão úmido de milho, tendo como referência o processamento seco desse cereal. O ensaio foi conduzido na Fazenda Experimental Lageado, pertencente à Faculdade de Ciências Agronômicas, e nas instalações da Faculdade de Medicina Veterinária e Zootecnia - UNESP, localizada no município de Botucatu - SP. O delineamento experimental foi em blocos ao acaso, com parcelas subdivididas no tempo (três épocas de colheita: silagem de planta inteira, silagem de grão úmido e colheita de grãos secos), com 10 repetições. As análises estatísticas foram realizadas por meio do programa ESTAT, pelo teste de média de Tukey, a 5% de probabilidade. A silagem de planta inteira teve o maior consumo de combustível por área. A secagem dos grãos de 15,5% para 13% foi responsável por 87% do gasto de energia por área. A silagem de grão úmido demandou o menor uso de energia por área nas operações mecanizadas.
Resumo:
The electric energy is essential to the development of modern society and its increasing demand in recent years, effect from population and economic growth, becomes the companies more interested in the quality and continuity of supply, factors regulated by ANEEL (Agência Nacional de Energia Elétrica). These factors must be attended when a permanent fault occurs in the system, where the defect location that caused the power interruption should be identified quickly, which is not a simple assignment because the current systems complexity. An example of this occurs in multiple terminals transmission lines, which interconnect existing circuits to feed the demand. These transmission lines have been adopted as a feasible solution to suply loads of magnitudes that do not justify economically the construction of new substations. This paper presents a fault location algorithm for multiple terminals transmission lines - two and three terminals. The location method is based on the use of voltage and current fundamental phasors, as well as the representation of the line through its series impedance. The wavelet transform is an effective mathematical tool in signals analysis with discontinuities and, therefore, is used to synchronize voltage and current data. The Fourier transform is another tool used in this work for extract voltage and current fundamental phasors. Tests to validate the location algorithm applicability used data from faulty signals simulated in ATP (Alternative Transients Program) as well as real data obtained from oscillographic recorders installed on CHESF s lines.
Resumo:
The correct selection of the operational sequence of soil tillage is essential to reduce the cost of agricultural mechanization in the regions that mobilize intensively the soil. The objective of this work was to evaluate the energetic demand and disaggregation of the soil in different operational sequences of subsoiling and systems of periodic soil tillage. The experimental design was blocks at random, in a factorial model 5 x 2 with 5 replications, being 5 tillage systems (D - Disc plow, Dn - disc plow followed at leveler rail, G - weight rail, Gn - weight rail followed of leveler rail and E - Stirrer.) and two sequencies of subsoiling (SP - Subsoiling - tillage and PS - Tillage - subsoiling). There were evaluated the energetic demand, fuel consumption by area and the soil disaggregation. The results showed that the operational sequence tillage of the soil subsoiling (PS) had a lower energetic requirement, except for the stirrer, the sequence tillage the soil - subsoiling consumed less fuel and soil disaggregation didn't show statistic variation.
Resumo:
Both the inadequate use and the ignorance of the different soil tillage implements available in the home market has become one of the leading motives of failures, related to soil and water conservation. The periodical tillage is traditionally utilized after subsoiling for soil clod breaking, leveling and residue incorporation. This work aimed to evaluate the energy requirement for different periodical soil tillage systems performed before and after subsoiling in a soil classified as Distroferric Red Nitosol. The periodic tillage systems were: disk plowing; disk plowing plus one leveling harrowing; disk harrow; disk harrow plus leveling harrowing stirring. The experimental design was a 5x2 factorial scheme with 5 completely randomized blocks. The results show that the periodic soil preparation systems based on disks have better energy efficiency when performed before the operation of subsoiling. The system of soil preparation with harrowing obtained the lower energy demand, in relation to other periodic soil preparation systems, when done after subsoiling.
Resumo:
This work aims to predict the total maximum demand of a transformer that will be used in power systems to attend a Multiple Unit Consumption (MUC) in design. In 1987, COSERN noted that calculation of maximum total demand for a building should be different from that which defines the scaling of the input protection extension in order to not overestimate the power of the transformer. Since then there have been many changes, both in consumption habits of the population, as in electrical appliances, so that this work will endeavor to improve the estimation of peak demand. For the survey, data were collected for identification and electrical projects in different MUCs located in Natal. In some of them, measurements were made of demand for 7 consecutive days and adjusted for an integration interval of 30 minutes. The estimation of the maximum demand was made through mathematical models that calculate the desired response from a set of information previously known of MUCs. The models tested were simple linear regressions, multiple linear regressions and artificial neural networks. The various calculated results over the study were compared, and ultimately, the best answer found was put into comparison with the previously proposed model
Resumo:
The opening of the Brazilian market of electricity and competitiveness between companies in the energy sector make the search for useful information and tools that will assist in decision making activities, increase by the concessionaires. An important source of knowledge for these utilities is the time series of energy demand. The identification of behavior patterns and description of events become important for the planning execution, seeking improvements in service quality and financial benefits. This dissertation presents a methodology based on mining and representation tools of time series, in order to extract knowledge that relate series of electricity demand in various substations connected of a electric utility. The method exploits the relationship of duration, coincidence and partial order of events in multi-dimensionals time series. To represent the knowledge is used the language proposed by Mörchen (2005) called Time Series Knowledge Representation (TSKR). We conducted a case study using time series of energy demand of 8 substations interconnected by a ring system, which feeds the metropolitan area of Goiânia-GO, provided by CELG (Companhia Energética de Goiás), responsible for the service of power distribution in the state of Goiás (Brazil). Using the proposed methodology were extracted three levels of knowledge that describe the behavior of the system studied, representing clearly the system dynamics, becoming a tool to assist planning activities
Resumo:
Atualmente há uma grande preocupação em relação a substituição das fontes não renováveis pelas fontes renováveis na geração de energia elétrica. Isto ocorre devido a limitação do modelo tradicional e da crescente demanda. Com o desenvolvimento dos conversores de potência e a eficácia dos esquemas de controle, as fontes renováveis têm sido interligadas na rede elétrica, em um modelo de geração distribuída. Neste sentido, este trabalho apresenta uma estratégia de controle não convencional, com a utilização de um controlador robusto, para a interconexão de sistemas fotovoltaicos com à rede elétrica trifásica. A compensação da qualidade de energia no ponto de acoplamento comum (PAC) é realizada pela estratégia proposta. As técnicas tradicionais utilizam detecção de harmônicos, já neste trabalho o controle das correntes é feita de uma forma indireta sem a necessidade desta detecção. Na estratégia indireta é de grande importância que o controle da tensão do barramento CC seja efetuado de uma forma que não haja grandes flutuações, e que a banda passante do controlador em regime permanente seja baixa para que as correntes da rede não tenham um alto THD. Por este motivo é utilizado um controlador em modo dual DSM-PI, que durante o transitório se comporta como um controlador em modo deslizante SM-PI, e em regime se comporta como um PI convencional. A corrente é alinhada ao ângulo de fase do vetor tensão da rede elétrica, obtido a partir do uso de um PLL. Esta aproximação permite regular o fluxo de potência ativa, juntamente com a compensação dos harmônicos e também promover a correção do fator de potência no ponto de acoplamento comum. Para o controle das correntes é usado um controlador dupla sequencia, que utiliza o princípio do modelo interno. Resultados de simulação são apresentados para demonstrar a eficácia do sistema de controle proposto
Resumo:
Low cost seals are made of NBR, Nitrile Butadiene Rubber, a family of unsaturated copolymers that is higher resistant to oils the more content of nitrile have in its composition, although lower its flexibility. In Petroleum Engineering, NBR seal wear can cause fluid leakage and environmental damages, promoting an increasing demand for academic knowledge about polymeric materials candidate to seals submitted to sliding contacts to metal surfaces. This investigation aimed to evaluate tribological responses of a commercial NBR, hardness 73 ± 5 Sh A, polytetrafluoroethylene (PTFE), hardness 60 ± 4 HRE and PTFE with graphite, 68 ± 6 HRE. The testings were performed on a sliding tribometer conceived to explore the tribological performance of stationary polymer plane coupons submitted to rotational cylinder contact surface of steel AISI 52100, 20 ± 1 HRC Hardness, under dry and lubricated (oil SAE 15W40) conditions. After screening testings, the normal load, relative velocity and sliding distance were 3.15 N, 0.8 m/s and 3.2 km, respectively. The temperatures were collected over distances of 3.0±0.5 mm and 750±50 mm far from the contact to evaluate the heating in this referential zone due to contact sliding friction by two thermocouples K type. The polymers were characterized through Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The wear mechanisms of the polymer surfaces were analyzed by Scanning Electron Microscopy (SEM) and EDS (Energy-Dispersive X-ray Spectroscopy). NBR referred to the higher values of heating, suggesting higher sliding friction. PTFE and PTFE with graphite showed lower heating, attributed to the delamination mechanism
Resumo:
The growing demand in the use of composite materials necessitates a better understanding of its behavior related to many conditions of loading and service, as well as under several ways of connections involved in mechanisms of structural projects. Within these project conditions are highlighted the presence of geometrical discontinuities in the area of cross and longitudinal sections of structural elements and environmental conditions of work like UV radiation, moisture, heat, leading to a decrease in final mechanical response of the material. In this sense, this thesis aims to develop studies detailed (experimental and semi-empirical models) the effects caused by the presence of geometric discontinuity, more specifically, a central hole in the longitudinal section (with reduced cross section) and the influence of accelerated environmental aging on the mechanical properties and fracture mechanism of FGRP composite laminates under the action of uniaxial tensile loads. Studies on morphological behavior and structural degradation of composite laminates are performed by macroscopic and microscopic analysis of affected surfaces, in addition to evaluation by the Measurement technique for mass variation (TMVM). The accelerated environmental aging conditions are simulated by aging chamber. To study the simultaneous influence of aging/geometric discontinuity in the mechanical properties of composite laminates, a semiempirical model is proposed and called IE/FCPM Model. For the stress concentration due to the central hole, an analisys by failures criteria were performed by Average-Stress Criterion (ASC) and Point-Stress Criterion (PSC). Two polymeric composite laminates, manufactured industrially were studied: the first is only reinforced by short mats of fiberglass-E (LM) and the second where the reinforced by glass fiber/E comes in the form of bidirectional fabric (LT). In the conception configurations of laminates the anisotropy is crucial to the final mechanical response of the same. Finally, a comparative study of all parameters was performed for a better understanding of the results. How conclusive study, the characteristics of the final fracture of the laminate under all conditions that they were subjected, were analyzed. These analyzes were made at the macroscopic level (scanner) microscope (optical and scanning electron). At the end of the analyzes, it was observed that the degradation process occurs similarly for each composite researched, however, the LM composite compared to composite LT (configurations LT 0/90º and LT ±45º) proved to be more susceptible to loss of mechanical properties in both regarding with the central hole as well to accelerated environmental aging
Resumo:
The growing demand in the use of composite materials necessitates a better understanding its behavior to many conditions of loading and service, as well as under several ways of connections involved in mechanisms of structural projects. It is know that most of the structural elements are designed with presence of geometric discontinuities (holes, notches, etc) in their longitudinal sections and / or transversals, and that these discontinuities affect the mechanical response of these elements. This work has aims to analyze a study of the mechanical response, when in the presence geometric discontinuity, of polymer matrix composite laminates (orthophthalic polyester) to the uniaxial tensile test. The geometric discontinuity is characterized by the presence of a center hole in the transversal section of the composite. In this study, different kinds of stacking sequences are tested, with and without the presence of the hole, so as to provide better understanding of the mechanical properties. This sense, two laminates were studied: the first is only reinforced by with seven layers short mats of fiberglass-E (CM) and the second where the reinforcement of fiberglass-E comes in the form of bidirectional fabric (CT), with only four layers. The laminate CT has the presence of anisotropy (sense of continuous fibers with respect to the applied load) as the main parameter influencing its mechanical behavior, behavior this, not observed for the CM. In addition to the mechanical properties was also studied the fracture characteristics developed in each composite laminated. The results also showed that the presence of the hole in the transversal section decreased the ultimate strength of laminates and changed the final characteristic of fracture in all kinds of composite laminated studied
Resumo:
The growing demand in the use of hybrid composite materials makes it essential a better understanding of their behavior face of various design conditions, such as the presence of geometric discontinuities in the cross section of structural elements. This way, the purpose of this dissertation is a study of the mechanical response (strength and stiffness), modes (characteristics) of fracture and Residual Strength of an hybrid polymeric composite with and without a geometric discontinuity in its longitudinal section (with a reduction in the cross section) loaded by uniaxial tension. This geometric discontinuity is characterized by central holes of different diameters. The hybrid composite was fabricated as laminate (plate) and consisting of ortho-tereftalic polyester matrix reinforced by 04 outer layers of Jute fibers bidirectional fabrics and 01 central layer of E-glass bidirectional fabric. The laminate was industrially manufactured (Tecniplas Nordeste Indústria e Comércio Ltda.), obtained by the hand lay-up technique. Initially, a study of the volumetric density of the laminate was made in order to verify its use in lightweight structures. Also were performed comparative studies on the mechanical properties and fracture modes under the conditions of the specimens without the central hole and with the different holes. For evaluating the possible influence of the holes in the structural stability of the laminate, the Residual Strength of the composite was determined for each case of variation in hole diameter. As a complementary study, analyses of the macroscopic final fracture characteristic of the laminates were developed. The presence of the central hole of any sizes, negatively changed the ultimate tensile strength. Regarding the elastic modulus, moreover, the difference found between the specimens was within the range of tests displacement, showing the laminate stability related to the stiffness
Resumo:
The continuous development of instruments and equipment used as tools or torque measurement in the industry is demanding more accurate techniques in the use of this kind instrumentation, including development of metrological characteristics in torque measurement. The same happens with the needs in calibration services. There is a diversity of methods of hand torque tools in the market with different measuring range but without complaining with technical standards in terms of requirements of quality and reliability. However, actually there is no choice of a torque measuring standard that fulfils, with low cost, the needs for the calibration of hand torque tools in a large number of ranges. The objective of this thesis is to show the development and evaluation of a torque measuring standard device with a conception to allow the calibration of hand torque tools with three levels of torque with an single instrument, promoting reduction of costs and time in the calibration, also offering reliability for the evaluation of torque measuring instrument. To attend the demand in the calibration of hand torque tools it is necessary that the calibration laboratories have a big collection of torque measuring standards, to fulfills the needs of the costumer, what is very costly. The development of this type of torque measuring standard revealed a viable technique and economically making possible the calibration of hand torque tools in different nominal ranges through a single measurement system versatile, efficient and of easy operation
Resumo:
With water pollution increment at the last years, so many progresses in researches about treatment of contaminated waters have been developed. In wastewaters containing highly toxic organic compounds, which the biological treatment cannot be applied, the Advanced Oxidation Processes (AOP) is an alternative for degradation of nonbiodegradable and toxic organic substances, because theses processes are generation of hydroxyl radical based on, a highly reactivate substance, with ability to degradate practically all classes of organic compounds. In general, the AOP request use of special ultraviolet (UV) lamps into the reactors. These lamps present a high electric power demand, consisting one of the largest problems for the application of these processes in industrial scale. This work involves the development of a new photochemistry reactor composed of 12 low cost black light fluorescent lamps (SYLVANIA, black light, 40 W) as UV radiation source. The studied process was the photo-Fenton system, a combination of ferrous ions, hydrogen peroxide, and UV radiation, it has been employed for the degradation of a synthetic wastewater containing phenol as pollutant model, one of the main pollutants in the petroleum industry. Preliminary experiments were carrier on to estimate operational conditions of the reactor, besides the effects of the intensity of radiation source and lamp distribution into the reactor. Samples were collected during the experiments and analyzed for determining to dissolved organic carbon (DOC) content, using a TOC analyzer Shimadzu 5000A. The High Performance Liquid Chromatography (HPLC) was also used for identification of the cathecol and hydroquinone formed during the degradation process of the phenol. The actinometry indicated 9,06⋅1018 foton⋅s-1 of photons flow, for 12 actived lamps. A factorial experimental design was elaborated which it was possible to evaluate the influence of the reactants concentration (Fe2+ and H2O2) and to determine the most favorable experimental conditions ([Fe2+] = 1,6 mM and [H2O2] = 150,5 mM). It was verified the increase of ferrous ions concentration is favorable to process until reaching a limit when the increase of ferrous ions presents a negative effect. The H2O2 exhibited a positive effect, however, in high concentrations, reaching a maximum ratio degradation. The mathematical modeling of the process was accomplished using the artificial neural network technique
Resumo:
The increasing demand for energy and the environment consequences derived from the use of fossil energy, beyond the future scarcity of the oil that currently is the main power plant of the world, it stimulated the research around the production of biodiesel. In this work the synthesis of biodiesel of cotton in the methyl route was carried through, for had been in such a way used catalyst commercial homogeneous, Na-Methylat and the K-Methylat, aiming to the evaluation of the efficiency of them. An experimental planning 23 was elaborated aiming to evaluate the influence of the variable (molar reason oil/alcohol, % of catalyst and temperature) in the process as well as indicating the excellent point of operation in each case. The biodiesel was analyzed by gaseous chromatography, indicating a conversion of 96,79% when used Na-Methylat® as catalytic, and 95,65% when the K-Methylat® was used. Optimum result found with regard to the conversion was obtained at the following conditions: molar reason oil/alcohol (1:8), temperature of 40°C and 1% of catalyst Na-Methylat, reaching a 96,79% conversion, being, therefore, above of the established for the European norm (96.5%). The analysis of regression showed that the only significant effect for a confidence level of 95%, was of the changeable temperature. The variance analysis evidenced that the considered model is fitted quite to the experimental response, being statistically significant; however it does not serve inside for make forecasts of the intervals established for each variable. The best samples were analyzed by infra-red (IR) that identified the strong bands of axial deformation C=O of methylic ester, characterized through analyses physicochemical that had indicated conformity with the norms of the ANP, that with the thermal and rheological analyses had together evidenced that biodiesel can be used as combustible alternative in substitution to diesel
Resumo:
The increasing demand for natural dyes in place of synthetic ones is justified by the non-toxicity or low toxicity of the former. The synthetic dyes are associated with diseases like cancer as well as when released in the environment takes longer to degrade and the intermediates could be still more toxic. The Annatto (Bixa Orellana L.) is a carotenoid and one of the more important natural dyes used in the food industry. In the form of dye, it represents nearly 70% of the world natural dye production and 90% in Brazil. In the present work, annatto seeds were used of the species peruana paulista, which had nearly 2.1% of bixin. The process of dye extraction with ethyl alcohol showed 4% of dye in the form of powder with particle diameter of 28mm. The extraction process did not alter the chemical composition of the dye, which was confirmed by the electronic spectrum of absorption. Dyeings were carried out with different mordents to study the total colour difference as well as the wash fastness properties and friction fastness properties under wet and dry conditions. The samples treated with copper sulphate showed colour difference but at the same time showed better fastness results. The samples treated with resin (no formaldehyde) did not alter the colour significantly still better the fastness properties. From the results, it could be stated that the resin could be an alternative for heavy metallic mordents