960 resultados para Davis, Joyce
Resumo:
This article describes investigations into the development of supramolecular systems capable of sensing anions through either displacement type assays or molecular motion. An electron deficient naphthalene diimide thread and electron rich isophthalamide naphthohydroquinone macrocycle was shown to form a coloured pseudorotaxane assembly. Investigations into the ability of such interpenetrated systems to sense anions colorimetrically were undertaken. Anion complexation to the isophthalamide group of the macrocycle causes displacement of the naphthodiimide thread resulting in the loss of colour. The enhanced mechanically bonded binding strength between the naphthodiimide axle and the naphthohydroquinone groups of the macrocycle wheel in the corresponding rotaxane structure however, was found to negate the anion induced displacement process.
Resumo:
In this paper, a plasmonic “ac Wheatstone bridge” circuit is proposed and theoretically modeled for the first time. The bridge circuit consists of three metallic nanoparticles, shaped as rectangular prisms, with two nanoparticles acting as parallel arms of a resonant circuit and the third bridging nanoparticle acting as an optical antenna providing an output signal. Polarized light excites localized surface plasmon resonances in the two arms of the circuit, which generate an optical signal dependent on the phase-sensitive excitations of surface plasmons in the antenna. The circuit is analyzed using a plasmonic coupling theory and numerical simulations. The analyses show that the plasmonic circuit is sensitive to phase shifts between the arms of the bridge and has the potential to detect the presence of single molecules.
Resumo:
The use of metal stripes for the guiding of plasmons is a well established technique for the infrared regime and has resulted in the development of a myriad of passive optical components and sensing devices. However, the plasmons suffer from large losses around sharp bends, making the compact design of nanoscale sensors and circuits problematic. A compact alternative would be to use evanescent coupling between two sufficiently close stripes, and thus we propose a compact interferometer design using evanescent coupling. The sensitivity of the design is compared with that achieved using a hand-held sensor based on the Kretschmann style surface plasmon resonance technique. Modeling of the new interferometric sensor is performed for various structural parameters using finite-difference time-domain and COMSOL Multiphysics. The physical mechanisms behind the coupling and propagation of plasmons in this structure are explained in terms of the allowed modes in each section of the device.
Resumo:
We present an experimental demonstration of strong optical coupling between CdSequantum dots of different sizes which is induced by a surface plasmon propagating on a planar silver thin film. Attenuated total reflection measurements demonstrate the hybridization of exciton states, characterized by the observation of two avoided crossings in the energy dispersion measured for the interacting system.