835 resultados para Data processing and analysis
Resumo:
Cover title.
Resumo:
The integration of geo-information from multiple sources and of diverse nature in developing mineral favourability indexes (MFIs) is a well-known problem in mineral exploration and mineral resource assessment. Fuzzy set theory provides a convenient framework to combine and analyse qualitative and quantitative data independently of their source or characteristics. A novel, data-driven formulation for calculating MFIs based on fuzzy analysis is developed in this paper. Different geo-variables are considered fuzzy sets and their appropriate membership functions are defined and modelled. A new weighted average-type aggregation operator is then introduced to generate a new fuzzy set representing mineral favourability. The membership grades of the new fuzzy set are considered as the MFI. The weights for the aggregation operation combine the individual membership functions of the geo-variables, and are derived using information from training areas and L, regression. The technique is demonstrated in a case study of skarn tin deposits and is used to integrate geological, geochemical and magnetic data. The study area covers a total of 22.5 km(2) and is divided into 349 cells, which include nine control cells. Nine geo-variables are considered in this study. Depending on the nature of the various geo-variables, four different types of membership functions are used to model the fuzzy membership of the geo-variables involved. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The enhanced biological phosphorus removal (EBPR) process is regularly used for the treatment of wastewater, but suffers from erratic performance. Successful EBPR relies on the growth of bacteria called polyphosphate-accumulating organisms (PAOs), which store phosphorus intracellularly as polyphosphate, thus removing it from wastewater. Metabolic models have been proposed which describe the measured chemical transformations, however genetic evidence is lacking to confirm these hypotheses. The aim of this research was to generate a metagenomic library from biomass enriched in PAOs as determined by phenotypic data and fluorescence in situ hybridisation (FISH) using probes specific for the only described PAO to date, Candidatus Accumulibacter phosphatis. DNA extraction methods were optimised and two fosmid libraries were constructed which contained 93 million base pairs of metagenomic data. Initial screening of the library for 16S rRNA genes revealed fosmids originating from a range of non-pure-cultured wastewater bacteria. The metagenomic libraries constructed will provide the ability to link phylogenetic and metabolic data for bacteria involved in nutrient removal from wastewater. Keywords DNA extraction; EBPR; metagenomic library; 16S rRNA gene.
Resumo:
Fuzzy data has grown to be an important factor in data mining. Whenever uncertainty exists, simulation can be used as a model. Simulation is very flexible, although it can involve significant levels of computation. This article discusses fuzzy decision-making using the grey related analysis method. Fuzzy models are expected to better reflect decision-making uncertainty, at some cost in accuracy relative to crisp models. Monte Carlo simulation is used to incorporate experimental levels of uncertainty into the data and to measure the impact of fuzzy decision tree models using categorical data. Results are compared with decision tree models based on crisp continuous data.
Resumo:
Background and purpose Survey data quality is a combination of the representativeness of the sample, the accuracy and precision of measurements, data processing and management with several subcomponents in each. The purpose of this paper is to show how, in the final risk factor surveys of the WHO MONICA Project, information on data quality were obtained, quantified, and used in the analysis. Methods and results In the WHO MONICA (Multinational MONItoring of trends and determinants in CArdiovascular disease) Project, the information about the data quality components was documented in retrospective quality assessment reports. On the basis of the documented information and the survey data, the quality of each data component was assessed and summarized using quality scores. The quality scores were used in sensitivity testing of the results both by excluding populations with low quality scores and by weighting the data by its quality scores. Conclusions Detailed documentation of all survey procedures with standardized protocols, training, and quality control are steps towards optimizing data quality. Quantifying data quality is a further step. Methods used in the WHO MONICA Project could be adopted to improve quality in other health surveys.
Resumo:
The data available during the drug discovery process is vast in amount and diverse in nature. To gain useful information from such data, an effective visualisation tool is required. To provide better visualisation facilities to the domain experts (screening scientist, biologist, chemist, etc.),we developed a software which is based on recently developed principled visualisation algorithms such as Generative Topographic Mapping (GTM) and Hierarchical Generative Topographic Mapping (HGTM). The software also supports conventional visualisation techniques such as Principal Component Analysis, NeuroScale, PhiVis, and Locally Linear Embedding (LLE). The software also provides global and local regression facilities . It supports regression algorithms such as Multilayer Perceptron (MLP), Radial Basis Functions network (RBF), Generalised Linear Models (GLM), Mixture of Experts (MoE), and newly developed Guided Mixture of Experts (GME). This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install & use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.
Resumo:
The perception of an object as a single entity within a visual scene requires that its features are bound together and segregated from the background and/or other objects. Here, we used magnetoencephalography (MEG) to assess the hypothesis that coherent percepts may arise from the synchronized high frequency (gamma) activity between neurons that code features of the same object. We also assessed the role of low frequency (alpha, beta) activity in object processing. The target stimulus (i.e. object) was a small patch of a concentric grating of 3c/°, viewed eccentrically. The background stimulus was either a blank field or a concentric grating of 3c/° periodicity, viewed centrally. With patterned backgrounds, the target stimulus emerged--through rotation about its own centre--as a circular subsection of the background. Data were acquired using a 275-channel whole-head MEG system and analyzed using Synthetic Aperture Magnetometry (SAM), which allows one to generate images of task-related cortical oscillatory power changes within specific frequency bands. Significant oscillatory activity across a broad range of frequencies was evident at the V1/V2 border, and subsequent analyses were based on a virtual electrode at this location. When the target was presented in isolation, we observed that: (i) contralateral stimulation yielded a sustained power increase in gamma activity; and (ii) both contra- and ipsilateral stimulation yielded near identical transient power changes in alpha (and beta) activity. When the target was presented against a patterned background, we observed that: (i) contralateral stimulation yielded an increase in high-gamma (>55 Hz) power together with a decrease in low-gamma (40-55 Hz) power; and (ii) both contra- and ipsilateral stimulation yielded a transient decrease in alpha (and beta) activity, though the reduction tended to be greatest for contralateral stimulation. The opposing power changes across different regions of the gamma spectrum with 'figure/ground' stimulation suggest a possible dual role for gamma rhythms in visual object coding, and provide general support of the binding-by-synchronization hypothesis. As the power changes in alpha and beta activity were largely independent of the spatial location of the target, however, we conclude that their role in object processing may relate principally to changes in visual attention.
Resumo:
Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. miniDVMS v1.8 provides a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualisation domain. The advantage of this interface is that the user is directly involved in the data mining process. Principled projection methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), are integrated with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, and user interaction facilities, to provide this integrated visual data mining framework. The software also supports conventional visualisation techniques such as principal component analysis (PCA), Neuroscale, and PhiVis. This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install and use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.
Resumo:
Since the original Data Envelopment Analysis (DEA) study by Charnes et al. [Measuring the efficiency of decision-making units. European Journal of Operational Research 1978;2(6):429–44], there has been rapid and continuous growth in the field. As a result, a considerable amount of published research has appeared, with a significant portion focused on DEA applications of efficiency and productivity in both public and private sector activities. While several bibliographic collections have been reported, a comprehensive listing and analysis of DEA research covering its first 30 years of history is not available. This paper thus presents an extensive, if not nearly complete, listing of DEA research covering theoretical developments as well as “real-world” applications from inception to the year 2007. A listing of the most utilized/relevant journals, a keyword analysis, and selected statistics are presented.
Resumo:
Photonic technologies for data processing in the optical domain are expected to play a major role in future high-speed communications. Nonlinear effects in optical fibres have many attractive features and great, but not yet fully explored potential for optical signal processing. Here we provide an overview of our recent advances in developing novel techniques and approaches to all-optical processing based on fibre nonlinearities.
Resumo:
Visualising data for exploratory analysis is a major challenge in many applications. Visualisation allows scientists to gain insight into the structure and distribution of the data, for example finding common patterns and relationships between samples as well as variables. Typically, visualisation methods like principal component analysis and multi-dimensional scaling are employed. These methods are favoured because of their simplicity, but they cannot cope with missing data and it is difficult to incorporate prior knowledge about properties of the variable space into the analysis; this is particularly important in the high-dimensional, sparse datasets typical in geochemistry. In this paper we show how to utilise a block-structured correlation matrix using a modification of a well known non-linear probabilistic visualisation model, the Generative Topographic Mapping (GTM), which can cope with missing data. The block structure supports direct modelling of strongly correlated variables. We show that including prior structural information it is possible to improve both the data visualisation and the model fit. These benefits are demonstrated on artificial data as well as a real geochemical dataset used for oil exploration, where the proposed modifications improved the missing data imputation results by 3 to 13%.
Resumo:
For optimum utilization of satellite-borne instrumentation, it is necessary to know precisely the orbital position of the spacecraft. The aim of this thesis is therefore two-fold - firstly to derive precise orbits with particular emphasis placed on the altimetric satellite SEASAT and secondly, to utilize the precise orbits, to improve upon atmospheric density determinations for satellite drag modelling purposes. Part one of the thesis, on precise orbit determinations, is particularly concerned with the tracking data - satellite laser ranging, altimetry and crossover height differences - and how this data can be used to analyse errors in the orbit, the geoid and sea-surface topography. The outcome of this analysis is the determination of a low degree and order model for sea surface topography. Part two, on the other hand, mainly concentrates on using the laser data to analyse and improve upon current atmospheric density models. In particular, the modelling of density changes associated with geomagnetic disturbances comes under scrutiny in this section. By introducing persistence modelling of a geomagnetic event and solving for certain geomagnetic parameters, a new density model is derived which performs significantly better than the state-of-the-art models over periods of severe geomagnetic storms at SEASAT heights. This is independently verified by application of the derived model to STARLETTE orbit determinations.
Resumo:
Recent work has highlighted the potential of sol-gel-derived calcium silicate glasses for the regeneration or replacement of damaged bone tissue. The work presented herein provides new insight into the processing of bioactive calcia-silica sol-gel foams, and the reaction mechanisms associated with them when immersed in vitro in a simulated body fluid (SBF). Small-angle X-ray scattering and wide-angle X-ray scattering (diffraction) have been used to study the stabilization of these foams via heat treatment, with analogous in situ time-resolved data being gathered for a foam immersed in SBF. During thermal processing, pore sizes have been identified in the range of 16.5-62.0 nm and are only present once foams have been heated to 400 degrees C and above. Calcium nitrate crystallites were present until foams were heated to 600 degrees C; the crystallite size varied from 75 to 145 nm and increased in size with heat treatment up to 300 degrees C, then decreased in size down to 95 rim at 400 degrees C. The in situ time-resolved data show that the average pore diameter decreases as a function of immersion time in SBF, as calcium phosphates grow on the glass surfaces. Over the same time, Bragg peaks indicative of tricalcium phosphate were evident after only 1-h immersion time, and later, hydroxycarbonate apatite was also seen. The hydroxycarbonate apatite appears to have preferred orientation in the (h,k,0) direction.