979 resultados para DNA nuclear
Resumo:
The uptake and expression of extracellular DNA has been established as a mechanism for horizontal transfer of genes between bacterial species. Such transfer can support acquisition of advantageous elements, including determinants that affect the interactions between infectious organisms and their hosts. Here we show that erythrocyte-stage Plasmodium falciparum malaria parasites spontaneously take up DNA from the host cell cytoplasm into their nuclei. We have exploited this finding to produce levels of reporter expression in P.falciparum that are substantially improved over those obtained by electroporation protocols currently used to transfect malaria parasites. Parasites were transformed to a drug-resistant state when placed into cell culture with erythrocytes containing a plasmid encoding the human dihydrofolate reductase sequence. The findings reported here suggest that the malaria genome may be continually exposed to exogenous DNA from residual nuclear material in host erythrocytes.
Resumo:
The human DNA ligase III gene encodes both nuclear and mitochondrial proteins. Abundant evidence supports the conclusion that the nuclear DNA ligase III protein plays an essential role in both base excision repair and homologous recombination. However, the role of DNA ligase III protein in mitochondrial genome dynamics has been obscure. Human tumor-derived HT1080 cells were transfected with an antisense DNA ligase III expression vector and clones with diminished levels of DNA ligase III activity identified. Mitochondrial protein extracts prepared from these clones had decreased levels of DNA ligase III relative to extracts from cells transfected with a control vector. Analysis of these clones revealed that the DNA ligase III antisense mRNA-expressing cells had reduced mtDNA content compared to control cells. In addition, the residual mtDNA present in these cells had numerous single-strand nicks that were not detected in mtDNA from control cells. Cells expressing antisense ligase III also had diminished capacity to restore their mtDNA to pre-irradiation levels following exposure to γ-irradiation. An antisense-mediated reduction in cellular DNA ligase IV had no effect on the copy number or integrity of mtDNA. This observaion, coupled with other evidence, suggests that DNA ligase IV is not present in the mitochondria and does not play a role in maintaining mtDNA integrity. We conclude that DNA ligase III is essential for the proper maintenance of mtDNA in cultured mammalian somatic cells.
Resumo:
We identified seven alternatively spliced forms of human 8-oxoguanine DNA glycosylase (OGG1) mRNAs, classified into two types based on their last exons (type 1 with exon 7: 1a and 1b; type 2 with exon 8: 2a to 2e). Types 1a and 2a mRNAs are major in human tissues. Seven mRNAs are expected to encode different polypeptides (OGG1–1a to 2e) that share their N terminus with the common mitochondrial targeting signal, and each possesses a unique C terminus. A 36-kDa polypeptide, corresponding to OGG1–1a recognized only by antibodies against the region containing helix-hairpin-helix-PVD motif, was copurified from the nuclear extract with an activity introducing a nick into DNA containing 8-oxoguanine. A 40-kDa polypeptide corresponding to a processed form of OGG1–2a was detected in their mitochondria using antibodies against its C terminus. Electron microscopic immunocytochemistry and subfractionation of the mitochondria revealed that OGG1–2a locates on the inner membrane of mitochondria. Deletion mutant analyses revealed that the unique C terminus of OGG1–2a and its mitochondrial targeting signal are essential for mitochondrial localization and that nuclear localization of OGG1–1a depends on the NLS at its C terminus.
Resumo:
The immediate early gene NUR77 (also called NGFI-B) is required for T cell antigen receptor-mediated cell death and is induced to very high levels in immature thymocytes and T cell hybridomas undergoing apoptosis. The Akt (PKB) kinase is a key player in transduction of anti-apoptotic and proliferative signals in T cells. Because Nur77 has a putative Akt phosphorylation site at Ser-350, and phosphorylation of this residue is critical for the transactivation activity of Nur77, we investigated whether Akt regulates Nur77. Coimmunoprecipitation experiments showed the detection of Nur77 in Akt immune complexes, suggesting that Nur77 and Akt physically interact. We further show that Akt specifically phosphorylates Ser-350 of the Nur77 protein within its DNA-binding domain in vitro and in vivo in 293 and NIH 3T3 cells. Because phosphorylation of Ser-350 of Nur77 is critical for its function as a transcription factor, we examined the effect of Akt on this function. By using luciferase assay experiments, we showed that phosphorylation of Nur77 by Akt decreased the transcriptional activity of Nur77 by 50–85%. Thus, we show that Akt interacts with Nur77 and inactivates Nur77 by phosphorylation at Ser-350 in a phosphatidylinositol 3-kinase-dependent manner, connecting the phosphatidylinositol 3-kinase-dependent Akt pathway and a nuclear receptor pathway.
Resumo:
The Saccharomyces cerevisiae CDC9 gene encodes a DNA ligase protein that is targeted to both the nucleus and the mitochondria. While nuclear Cdc9p is known to play an essential role in nuclear DNA replication and repair, its role in mitochondrial DNA dynamics has not been defined. It is also unclear whether additional DNA ligase proteins are present in yeast mitochondria. To address these issues, mitochondrial DNA ligase function in S.cerevisiae was analyzed. Biochemical analysis of mitochondrial protein extracts supported the conclusion that Cdc9p was the sole DNA ligase protein present in this organelle. Inactivation of mitochondrial Cdc9p function led to a rapid decline in cellular mitochondrial DNA content in both dividing and stationary yeast cultures. In contrast, there was no apparent defect in mitochondrial DNA dynamics in a yeast strain deficient in Dnl4p (Δdnl4). The Escherichia coli EcoRI endonuclease was targeted to yeast mitochondria. Transient expression of this recombinant EcoRI endonuclease led to the formation of mitochondrial DNA double-strand breaks. While wild-type and Δdnl4 yeast were able to rapidly recover from this mitochondrial DNA damage, clones deficient in mitochondrial Cdc9p were not. These results support the conclusion that yeast rely upon a single DNA ligase, Cdc9p, to carry out mitochondrial DNA replication and recovery from both spontaneous and induced mitochondrial DNA damage.
Resumo:
The maize genome is replete with chromosomal duplications and repetitive DNA. The duplications resulted from an ancient polyploid event that occurred over 11 million years ago. Based on DNA sequence data, the polyploid event occurred after the divergence between sorghum and maize, and hence the polyploid event explains some of the difference in DNA content between these two species. Genomic rearrangement and diploidization followed the polyploid event. Most of the repetitive DNA in the maize genome is retrotransposable elements, and they comprise 50% of the genome. Retrotransposon multiplication has been relatively recent—within the last 5–6 million years—suggesting that the proliferation of retrotransposons has also contributed to differences in DNA content between sorghum and maize. There are still unanswered questions about repetitive DNA, including the distribution of repetitive DNA throughout the genome, the relative impacts of retrotransposons and chromosomal duplication in plant genome evolution, and the hypothesized correlation of duplication events with transposition. Population genetic processes also affect the evolution of genomes. We discuss how centromeric genes should, in theory, contain less genetic diversity than noncentromeric genes. In addition, studies of diversity in the wild relatives of maize indicate that different genes have different histories and also show that domestication and intensive breeding have had heterogeneous effects on genetic diversity across genes.
Resumo:
Within chromatin, the core histone tail domains play critical roles in regulating the structure and accessibility of nucleosomal DNA within the chromatin fiber. Thus, many nuclear processes are facilitated by concomitant posttranslational modification of these domains. However, elucidation of the mechanisms by which the tails mediate such processes awaits definition of tail interactions within chromatin. In this study we have investigated the primary DNA target of the majority of the tails in mononucleosomes. The results clearly show that the tails bind preferentially to “linker” DNA, outside of the DNA encompassed by the nucleosome core. These results have important implications for models of tail function within the chromatin fiber and for in vitro structural and functional studies using nucleosome core particles.
Resumo:
Gene transfer to eukaryotic cells requires the uptake of exogenous DNA into the cell nucleus. Except during mitosis, molecular access to the nuclear interior is limited to passage through the nuclear pores. Here we demonstrate the nuclear uptake of extended linear DNA molecules by a combination of fluorescence microscopy and single-molecule manipulation techniques, using the latter to follow uptake kinetics of individual molecules in real time. The assays were carried out on nuclei reconstituted in vitro from extracts of Xenopus eggs, which provide both a complete complement of biochemical factors involved in nuclear protein import, and unobstructed access to the nuclear pores. We find that uptake of DNA is independent of ATP or GTP hydrolysis, but is blocked by wheat germ agglutinin. The kinetics are much slower than would be expected from hydrodynamic considerations. A fit of the data to a simple model suggests femto-Newton forces and a large friction relevant to the uptake process.
Resumo:
The gene encoding type II DNA topoisomerase from the kinetoplastid hemoflagellated protozoan parasite Leishmania donovani (LdTOP2) was isolated from a genomic DNA library of this parasite. DNA sequence analysis revealed an ORF of 3711 bp encoding a putative protein of 1236 amino acids with no introns. The deduced amino acid sequence of LdTOP2 showed strong homologies to TOP2 sequences from other kinetoplastids, namely Crithidia and Trypanosoma spp. with estimated identities of 86 and 68%, respectively. LdTOP2 shares a much lower identity of 32% with its human homologue. LdTOP2 is located as a single copy on a chromosome in the 0.7 Mb region in the L.donovani genome and is expressed as a 5 kb transcript. 5′-Mapping studies indicate that the LdTOP2 gene transcript is matured post-transcriptionally with the trans-splicing of the mini-exon occurring at –639 from the predicted initiation site. Antiserum raised in rabbit against glutathione S-transferase fusion protein containing the major catalytic portion of the recombinant L.donovani topoisomerase II protein could detect a band on western blots at ∼132 kDa, the expected size of the entire protein. Use of the same antiserum for immunolocalisation analysis led to the identification of nuclear, as well as kinetoplast, antigens for L.donovani topoisomerase II. The in vitro biochemical properties of the full-length recombinant LdTOP2 when overexpressed in E.coli were similar to the Mg(II) and ATP-dependent activity found in cell extracts of L.donovani.
Resumo:
The stress-activated protein kinase p38 is often induced by cytotoxic agents, but its contribution to cell death is ill defined. In Rat-1 cells, we found a strong correlation between activation of p38 and induction of c-Myc–dependent apoptosis. In cells with deregulated c-Myc expression but not in control cells, cis-diamminedichloroplatinum induced p38 activity and typical features of apoptosis, including internucleosomal DNA degradation, induction of caspase activities, and both nuclear (nuclear condensation and fragmentation) and extranuclear (cell blebbing) morphological alterations. The pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone did not block p38 activation and the p38 inhibitor SB203580 had no detectable effect on the activation of caspases or the in vivo cleavage of several caspase substrates, suggesting that p38 and caspase activation can contribute distinct features of apoptosis. Accordingly, we found that cell blebbing was independent of caspase activity and, rather, depended on p38-sensitive changes in microfilament dynamics likely mediated by heat shock protein 27 phosphorylation. Furthermore, p38 activity contributed to both caspase-dependent and caspase-independent nuclear condensation and fragmentation, suggesting a role in an early event triggering both mechanisms of apoptosis or sensitizing the cells to the action of both types of apoptosis executioners. Inhibiting p38 also resulted in a significant enhancement in cell survival estimated by colony formation. This capacity to modulate the sensitivity to apoptosis in cells with deregulated c-Myc expression suggests an important role for p38 in tumor cell killing by chemotherapeutic agents.
Resumo:
Maintenance of genomic integrity and stable transmission of genetic information depend on a number of DNA repair processes. Failure to faithfully perform these processes can result in genetic alterations and subsequent development of cancer and other genetic diseases. In the eukaryote Saccharomyces cerevisiae, homologous recombination is the major pathway for repairing DNA double-strand breaks. The key role played by Rad52 in this pathway has been attributed to its ability to seek out and mediate annealing of homologous DNA strands. In this study, we find that S. cerevisiae Rad52 fused to green fluorescent protein (GFP) is fully functional in DNA repair and recombination. After induction of DNA double-strand breaks by γ-irradiation, meiosis, or the HO endonuclease, Rad52-GFP relocalizes from a diffuse nuclear distribution to distinct foci. Interestingly, Rad52 foci are formed almost exclusively during the S phase of mitotic cells, consistent with coordination between recombinational repair and DNA replication. This notion is further strengthened by the dramatic increase in the frequency of Rad52 focus formation observed in a pol12-100 replication mutant and a mec1 DNA damage checkpoint mutant. Furthermore, our data indicate that each Rad52 focus represents a center of recombinational repair capable of processing multiple DNA lesions.
Resumo:
The β and proliferating cell nuclear antigen (PCNA) sliding clamps were first identified as components of their respective replicases, and thus were assigned a role in chromosome replication. Further studies have shown that the eukaryotic clamp, PCNA, interacts with several other proteins that are involved in excision repair, mismatch repair, cellular regulation, and DNA processing, indicating a much wider role than replication alone. Indeed, the Escherichia coli β clamp is known to function with DNA polymerases II and V, indicating that β also interacts with more than just the chromosomal replicase, DNA polymerase III. This report demonstrates three previously undetected protein–protein interactions with the β clamp. Thus, β interacts with MutS, DNA ligase, and DNA polymerase I. Given the diverse use of these proteins in repair and other DNA transactions, this expanded list of β interactive proteins suggests that the prokaryotic β ring participates in a wide variety of reactions beyond its role in chromosomal replication.
Resumo:
We report the isolation and characterization of CDC45, which encodes a polypeptide of 650 amino acids that is essential for the initiation of chromosomal DNA replication in the budding yeast, Saccharomyces cerevisiae. CDC45 genetically interacts with at least two members of the MCM (minichromosome maintenance) family of replication genes, CDC46 and CDC47, which are proposed to perform a role in restricting initiation of DNA replication to once per cell cycle. Like mutants in several MCM genes, alleles of CDC45 also show a severe minichromosome maintenance defect. Together, these observations imply that Cdc45p performs a role in the control of initiation events at chromosomal replication origins. We investigated this possibility further and present evidence demonstrating that Cdc45p is assembled into complexes with one MCM family member, Cdc46p/Mcm5p. These observations point to a role for Cdc45p in controlling the early steps of chromosomal DNA replication in conjunction with MCM polypeptide complexes. Unlike the MCMs, however, the subcellular localization of Cdc45p does not vary with the cell cycle, making it likely that Cdc45p interacts with MCMs only during the nuclear phase of MCM localization in G1.
Resumo:
Mean nuclear 2C DNA content (C equaling haploid DNA per nucleus) of the first leaf of the sunflower, Helianthus annuus L., is influenced by the quality and the quantity of light. Seedlings of two inbred lines, RHA 299 and RHA 271 were germinated and grown in controlled environmental conditions. Lighting was adjusted to provide different combinations of photon flux densities and red to far red (R:FR) ratios. At R:FR = 5.8 and photon flux densities of 170 mumol.m-2.s-1, 200 mumol.m-2.s-1, and 230 mumol.m-2.s-1, DNA content remained high and relatively constant (x = 6.97 pg for RHA 271 and x = 7.32 pg for RHA 299). When the photon flux density range (R:FR = 5.8) was elevated to 350 mumol.m-2.s-1, 410 mumol.m-2.s-1, and 470 mumol.m-2.s-1, mean DNA content was reduced to 6.23 pg (RHA 271) and 6.46 pg (RHA 299). At R:FR = 1.5, mean DNA content was consistently high (7.2-7.9 pg) only at the lowest photon flux density of 170 mumol.m-2.s-1. Significant decreases in DNA content (< or = 12%) were observed at photon flux densities of 200 mumol.m-2.s-1 and 230 mumol.m-2.s-1. At the higher photon flux densities (350 mumol.m-2.s-1, 410 mumol.m-2.s-1, and 470 mumol.m-2.s-1) and R:RF = 1.5, the plants had extremely low DNA contents (mean x = 3.36 pg for RHA 271 and 3.41 pg for RHA 299) and high between-plant variance. The instability of DNA content, particularly for plants grown under light that is far red rich, suggests that phytochromes may be involved in regulating DNA content of the sunflower.
Resumo:
Tissue-specific transcription is regulated in part by cell type-restricted proteins that bind to defined sequences in target genes. The DNA-binding domain of these proteins is often evolutionarily conserved. On this basis, liver-enriched transcription factors were classified into five families. We describe here the mammalian prototype of a sixth family, which we therefore call hepatocyte nuclear factor 6 (HNF-6). It activates the promoter of a gene involved in the control of glucose metabolism. HNF-6 contains two different DNA-binding domains. One of these corresponds to a novel type of homeodomain. The other is homologous to the Drosophila cut domain. A similar bipartite sequence is coded by the genome of Caenorhabditis elegans.