925 resultados para DNA Sequencing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A collaborative exercise was carried out by the European DNA Profiling Group (EDNAP) in order to evaluate the distribution of mitochondrial DNA (mtDNA) heteroplasmy amongst the hairs of an individual who displays point heteroplasmy in blood and buccal cells. A second aim of the exercise was to study reproducibility of mtDNA sequencing of hairs between laboratories using differing chemistries, further to the first mtDNA reproducibility study carried out by the EDNAP group. Laboratories were asked to type 2 sections from each of 10 hairs, such that each hair was typed by at least two laboratories. Ten laboratories participated in the study, and a total of 55 hairs were typed. The results showed that the C/T point heteroplasmy observed in blood and buccal cells at position 16234 segregated differentially between hairs, such that some hairs showed only C, others only T and the remainder, C/T heteroplasmy at varying ratios. Additionally, differential segregation of heteroplasmic variants was confirmed in independent extracts at positions 16093 and the poly(C) tract at 302-309, whilst a complete A-G transition was confirmed at position 16129 in one hair. Heteroplasmy was observed at position 16195 on both strands of a single extract from one hair segment, but was not observed in the extracts from any other segment of the same hair. Similarly, heteroplasmy at position 16304 was observed on both strands of a single extract from one hair. Additional variants at positions 73, 249 and the HVII poly(C) region were reported by one laboratory; as these were not confirmed in independent extracts, the possibility of contamination cannot be excluded. Additionally, the electrophoresis and detection equipment used by this laboratory was different to those of the other laboratories, and the discrepancies at position 249 and the HVII poly(C) region appear to be due to reading errors that may be associated with this technology. The results, and their implications for forensic mtDNA typing, are discussed in the light of the biology of hair formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phascolomyces articulosus genomic DNA was isolated from 48 h old hyphae and was used for amplification of a chitin synthase fragment by the polymerase chain reaction method. The primers used in the amplification corresponded to two widely conserved amino acid regions found in chitin synthases of many fimgi. Amphfication resulted in four bands (820, 900, 1000 and 1500 bp, approximately) as visualized in a 1.2% agarose gel. The lowest band (820 bp) was selected as a candidate for chitin synthase because most amplified regions from other fimgi so far exhibited similar sizes (600-750 bp). The selected fragment was extracted from the gel and cloned in the Hinc n site of pUC19. The derived plasmid and insert were designated ^\5C\9'PaCHS and PaCHS respectively. The plasmid pUC19-PaC/fS was digested by several restriction enzymes and was found to contain BamHl and HincU sites. Sequencing of PaCHS revealed two intron sequences and a total open reading frame of 200 amino acids. The derived polypeptide was compared with other related sequences from the EMBL database (Heidelberg, Germany) and was matched to 36 other fiilly or partially sequenced fimgal chitin synthase genes. The closest resemblance was with two genes (74.5% and 73.1% identity) from Rhizopus oligosporus. Southern hybridization with the cloned fragment as a probe to the PCR reaction showed a strong signal at the fragment selected for cloning and weaker signals at the other two fragments. Southern hybridization with partially digested Phascolomyces articulosus genomic DNA showed a single band. The amino acid sequence was compared with sequences from other chitin synthase gene classes using the CLUSTALW program. The chitin synthase fragment from Phascolomyces articulosus was initially grouped in class n along with chitin synthase fragments from Rhizopus oligosporus and Phycomyces blakesleeanus which also belong to the same class, Zygomycetes. Bootstrap analysis using the neighbor-joining method available by CLUSTALW verified such classification. Comparison of PaCHS revealed conservation of intron positions that are characteristic of chitin synthase gene fragments of zygomycetous fungi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adenoviruses are nonenveloped icosahedral shaped particles. The double stranded DNA viral genome is divided into 5 major early transcription units, designated E1 A, E1 B, and E2 to E4, which are expressed in a regulated manner soon after infection. The gene products of the early region 3 (E3), shown to be nonessential for viral replication in vitro, are believed to be involved in counteracting host immunosurveillance. In order to sequence the E3 region of Bovine adenovirus type 2 (BAV2) it was necessary to determine the restriction map for the plasmid pEA48. A physical restriction endonuclease map for BamHl, Clal, Eco RI, Hindlll, Kpnl, Pstt, Sail, and Xbal was constructed. The DNA insert in pEA48 was determined to be viral in origin using Southern hybridization. A human adenovirus type 5 recombinant plasmid, containing partial DNA fragments of the two transcription units L4 and L5 that lie just outside the E3, was used to localize this region. The recombinant plasmid pEA was subcloned to facilitate sequencing. The DNA sequences between 74.8 and 90.5 map units containing the E3, the hexon associated protein (pVIII), and the fibre gene were determined. Homology comparison revealed that the genes for the hexon associated pV11I and the fibre protein are conserved. The last 70 amino acids of the BAV2 pV11I were the most conserved, showing a similarity of 87 percent with Ad2 pV1I1. A comparison between the predicted amino acid sequences of BAV2 and Ad40, Ad41 , Ad2 and AdS, revealed that they have an identical secondary structure consisting of a tail, a shaft and a knob. The shaft is composed of 22, 15 amino acid motifs, with periodic glycines and hydrophobic residues. The E3 region was found to consist of about 2.3 Kbp and to encode four proteins that were greater than 60 amino acids. However, these four open reading frames did not show significant homology to any other known adenovirus DNA or protein sequence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ease of production and manipulation has made plasmid DNA a prime target for its use in gene transfer technologies such as gene therapy and DNA vaccines. The major drawback of plasmid however is its stability within mammalian cells. Plasmid DNA is usually lost by cellular mechanisms or as a result of mitosis by simple dilution. This study set out to search for mammalian genomic DNA sequences that would enhance the stability of plasmid DNA in mammalian cells.Creating a plasmid based genomic DNA library, we were able to screen the human genome by transfecting the library into Human Embryonic Kidney (HEK 293) Cells. Cells that contained plasmid DNA were selected, using G418 for 14 days. The resulting population was then screened for the presence of biologically active plasmid DNA using the process of transformation as a detector.A commercially available plasmid DNA isolation kit was modified to extract plasmid DNA from mammalian cells. The standardized protocol had a detection limit of -0.6 plasmids per cell in one million cells. This allowed for the detection of 45 plasmids that were maintained for 32 days in the HEK 293 cells. Sequencing of selected inserts revealed a significantly higher thymine content in comparison to the human genome. Sequences with high A/T content have been associated with Scaffold/Matrix Attachment Region (S/MAR) sequences in mammalian cells. Therefore, association with the nuclear matrix might be required for the stability of plasmids in mammalian cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variations in different types of genomes have been found to be responsible for a large degree of physical diversity such as appearance and susceptibility to disease. Identification of genomic variations is difficult and can be facilitated through computational analysis of DNA sequences. Newly available technologies are able to sequence billions of DNA base pairs relatively quickly. These sequences can be used to identify variations within their specific genome but must be mapped to a reference sequence first. In order to align these sequences to a reference sequence, we require mapping algorithms that make use of approximate string matching and string indexing methods. To date, few mapping algorithms have been tailored to handle the massive amounts of output generated by newly available sequencing technologies. In otrder to handle this large amount of data, we modified the popular mapping software BWA to run in parallel using OpenMPI. Parallel BWA matches the efficiency of multithreaded BWA functions while providing efficient parallelism for BWA functions that do not currently support multithreading. Parallel BWA shows significant wall time speedup in comparison to multithreaded BWA on high-performance computing clusters, and will thus facilitate the analysis of genome sequencing data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA assembly is among the most fundamental and difficult problems in bioinformatics. Near optimal assembly solutions are available for bacterial and small genomes, however assembling large and complex genomes especially the human genome using Next-Generation-Sequencing (NGS) technologies is shown to be very difficult because of the highly repetitive and complex nature of the human genome, short read lengths, uneven data coverage and tools that are not specifically built for human genomes. Moreover, many algorithms are not even scalable to human genome datasets containing hundreds of millions of short reads. The DNA assembly problem is usually divided into several subproblems including DNA data error detection and correction, contig creation, scaffolding and contigs orientation; each can be seen as a distinct research area. This thesis specifically focuses on creating contigs from the short reads and combining them with outputs from other tools in order to obtain better results. Three different assemblers including SOAPdenovo [Li09], Velvet [ZB08] and Meraculous [CHS+11] are selected for comparative purposes in this thesis. Obtained results show that this thesis’ work produces comparable results to other assemblers and combining our contigs to outputs from other tools, produces the best results outperforming all other investigated assemblers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA methyltransferases of type Dnmt2 are a highly conserved protein family with enigmatic function. The aim of this work was to characterize DnmA, the Dnmt2 methyltransferase in Dictyostelium discoideum, and further to investigate its implication in DNA methylation and transcriptional gene silencing. The genome of the social amoeba Dictyostelium encodes DnmA as the sole DNA methyltransferase. The enzyme bears all ten characteristic DNA methyltransferase motifs in its catalytic domain. The DnmA mRNA was found by RT-PCR to be expressed during vegetative growth and down regulated during development. Investigations using fluorescence microscopy showed that both DnmA-myc and DnmA-GFP fusions predominantly localised to the nucleus. The function of DnmA remained initially unclear, but later experiment revealed that the enzyme is an active DNA methyltransferase responsible for all DNA (cytosine) methylation in Dictyostelium. Neither in gel retardation assays, nor by the yeast two hybrid system, clues on the functionality of DnmA could be obtained. However, immunological detection of the methylation mark with an α - 5mC antibody gave initial evidence that the DNA of Dictyostelium was methylated. Furthermore, addition of 5-aza-cytidine as demethylating agent to the Dictyostelium medium and subsequent in vitro incubation of the DNA isolated from these cells with recombinant DnmA showed that the enzyme binds slightly better to this target DNA. In order to investigate further the function of the protein, a gene knock-out for dnmA was generated. The gene was successfully disrupted by homologous recombination, the knock-out strain, however, did not show any obvious phenotype under normal laboratory conditions. To identify specific target sequences for DNA methylation, a microarray analysis was carried out. Setting a threshold of at least 1.5 fold for differences in the strength of gene expression, several such genes in the knock-out strain were chosen for further investigation. Among the up-regulated genes were the ESTs representing the gag and the RT genes respectively of the retrotransposon skipper. In addition Northern blot analysis confirmed the up-regulation of skipper in the DnmA knock-out strain. Bisufite treatment and sequencing of specific DNA stretches from skipper revealed that DnmA is responsible for methylation of mostly asymmetric cytosines. Together with skipper, DIRS-1 retrotransposon was found later also to be methylated but was not present on the microarray. Furthermore, skipper transcription was also up-regulated in strains that had genes disrupted encoding components of the RNA interference pathway. In contrast, DIRS 1 expression was not affected by a loss of DnmA but was strongly increased in the strain that had the RNA directed RNA polymerase gene rrpC disrupted. Strains generated by propagating the usual wild type Ax2 and the DnmA knock-out cells over 16 rounds in development were analyzed for transposon activity. Northern blot analysis revealed activation for skipper expression, but not for DIRS-1. A large number of siRNAs were found to be correspondent to the DIRS-1 sequence, suggesting concerted regulation of DIRS-1 expression by RNAi and DNA methylation. In contrast, no siRNAs corresponding to the standard skipper element were found. The data show that DNA methylation plays a crucial role in epigenetic gene regulation in Dictyostelium and that different, partially overlapping mechanisms control transposon silencing for skipper and DIRS-1. To elucidate the mechanism of targeting the protein to particular genes in the Dictyostelium genome, some more genes which were up-regulated in the DnmA knock-out strain were analyzed by bisulfite sequencing. The chosen genes are involved in the multidrug response in other species, but their function in Dictyostelium is uncertain. Bisulfite data showed that two of these genes were methylated at asymmetrical C-residues in the wild type, but not in DnmA knock-out cells. This suggested that DNA methylation in Dictyostelium is involved not only in transposon regulation but also in transcriptional silencing of specific genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder haracterized by extreme sensitivity to actinic pigmentation changes in the skin and increased incidence of skin cancer. In some cases, patients are affected by neurological alterations. XP is caused by mutations in 8 distinct genes (XPA through XPG and XPV). The XP-V (variant) subtype of the disease results from mutations in a gene (XPV, also named POLH) which encodes for Polg, a member of the Y-DNA polymerase family. Although the presence and severity of skin and neurological dysfunctions differ between XP subtypes, there are overlapping clinical features among subtypes such that the sub-type cannot be deduced from the clinical features. In this study, in order to overcome this drawback, we undertook whole-exome sequencing in two XP sibs and their father. We identified a novel homozygous nonsense mutation (c.897T.G, p.Y299X) in POLH which causes the disease. Our results demonstrate that next generation sequencing is a powerful approach to rapid determination of XP genetic etiology.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mitochondrial DNA (mtDNA) mutations are an important cause of genetic disease and have been proposed to play a role in the ageing process. Quantification of total mtDNA mutation load in ageing tissues is difficult as mutational events are rare in a background of wild-type molecules, and detection of individual mutated molecules is beyond the sensitivity of most sequencing based techniques. The methods currently most commonly used to document the incidence of mtDNA point mutations in ageing include post-PCR cloning, single-molecule PCR and the random mutation capture assay. The mtDNA mutation load obtained by these different techniques varies by orders of magnitude, but direct comparison of the three techniques on the same ageing human tissue has not been performed. We assess the procedures and practicalities involved in each of these three assays and discuss the results obtained by investigation of mutation loads in colonic mucosal biopsies from ten human subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mitochondrial DNA (mtDNA) mutations are an important cause of genetic disease and have been proposed to play a role in the ageing process. Quantification of total mtDNA mutation load in ageing tissues is difficult as mutational events are rare in a background of wild-type molecules, and detection of individual mutated molecules is beyond the sensitivity of most sequencing based techniques. The methods currently most commonly used to document the incidence of mtDNA point mutations in ageing include post-PCR cloning, single-molecule PCR and the random mutation capture assay. The mtDNA mutation load obtained by these different techniques varies by orders of magnitude, but direct comparison of the three techniques on the same ageing human tissue has not been performed. We assess the procedures and practicalities involved in each of these three assays and discuss the results obtained by investigation of mutation loads in colonic mucosal biopsies from ten human subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The availability of crop specimens archived in herbaria and old seed collections represent valuable resources for the analysis of plant genetic diversity and crop domestication. The ability to extract ancient DNA (aDNA) from such samples has recently allowed molecular genetic investigations to be undertaken in ancient materials. While analyses of aDNA initially focused on the use of markers which occur in multiple copies such as the internal transcribed spacer region (ITS) within ribosomal DNA and those requiring amplification of short DNA regions of variable length such as simple sequence repeats (SSRs), emphasis is now moving towards the genotyping of single nucleotide polymorphisms (SNPs), traditionally undertaken in aDNA by Sanger sequencing. Here, using a panel of barley aDNA samples previously surveyed by Sanger sequencing for putative causative SNPs within the flowering-time gene PPD-H1, we assess the utility of the Kompetitive Allele Specific PCR (KASP) genotyping platform for aDNA analysis. We find KASP to out-perform Sanger sequencing in the genotyping of aDNA samples (78% versus 61% success, respectively), as well as being robust to contamination. The small template size (≥46 bp) and one-step, closed-tube amplification/genotyping process make this platform ideally suited to the genotypic analysis of aDNA, a process which is often hampered by template DNA degradation and sample cross-contamination. Such attributes, as well as its flexibility of use and relatively low cost, make KASP particularly relevant to the genetic analysis of aDNA samples. Furthermore, KASP provides a common platform for the genotyping and analysis of corresponding SNPs in ancient, landrace and modern plant materials. The extended haplotype analysis of PPD-H1 undertaken here (allelic variation at which is thought to be important for the spread of domestication and local adaptation) provides further resolution to the previously identified geographic cline of flowering-time allele distribution, illustrating how KASP can be used to aid genetic analyses of aDNA from plant species. We further demonstrate the utility of KASP by genotyping ten additional genetic markers diagnostic for morphological traits in barley, shedding light on the phenotypic traits, alleles and allele combinations present in these unviable ancient specimens, as well as their geographic distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Age-related decline in the integrity of mitochondria is an important contributor to the human ageing process. In a number of ageing stem cell populations, this decline in mitochondrial function is due to clonal expansion of individual mitochondrial DNA (mtDNA) point mutations within single cells. However the dynamics of this process and when these mtDNA mutations occur initially are poorly understood. Using human colorectal epithelium as an exemplar tissue with a well-defined stem cell population, we analysed samples from 207 healthy participants aged 17-78 years using a combination of techniques (Random Mutation Capture, Next Generation Sequencing and mitochondrial enzyme histochemistry), and show that: 1) non-pathogenic mtDNA mutations are present from early embryogenesis or may be transmitted through the germline, whereas pathogenic mtDNA mutations are detected in the somatic cells, providing evidence for purifying selection in humans, 2) pathogenic mtDNA mutations are present from early adulthood (<20 years of age), at both low levels and as clonal expansions, 3) low level mtDNA mutation frequency does not change significantly with age, suggesting that mtDNA mutation rate does not increase significantly with age, and 4) clonally expanded mtDNA mutations increase dramatically with age. These data confirm that clonal expansion of mtDNA mutations, some of which are generated very early in life, is the major driving force behind the mitochondrial dysfunction associated with ageing of the human colorectal epithelium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of scat surveys to obtain DNA has been well documented in temperate areas, where DNA preservation may be more effective than in tropical forests. Samples obtained in the tropics are often exposed to high humidity, warm temperatures, frequent rain and intense sunlight, all of which can rapidly degrade DNA. Despite these potential problems, we demonstrate successful mtDNA amplification and sequencing for faeces of carnivores collected in tropical conditions and quantify how sample condition and environmental variables influence the success of PCR amplification and species identification. Additionally, the feasibility of genotyping nuclear microsatellites from jaguar (Panthera onca) faeces was investigated. From October 2007 to December 2008, 93 faecal samples were collected in the southern Brazilian Amazon. A total of eight carnivore species was successfully identified from 71% of all samples obtained. Information theoretic analysis revealed that the number of PCR attempts before a successful sequence was an important negative predictor across all three responses (success of species identification, success of species identification from the first sequence and PCR amplification success), whereas the relative importance of the other three predictors (sample condition, season and distance from forest edge) varied between the three responses. Nuclear microsatellite amplification from jaguar faeces had lower success rates (15-44%) compared with those of the mtDNA marker. Our results show that DNA obtained from faecal samples works efficiently for carnivore species identification in the Amazon forest and also shows potential for nuclear DNA analysis, thus providing a valuable tool for genetic, ecological and conservation studies.