896 resultados para DIABETIC COMPLICATIONS
Resumo:
Background: Tonsillectomy is one of the most common surgical procedures, but there is debate whether systemic steroids should be used to reduce pain and post-operative complications.
Resumo:
AIMS/HYPOTHESIS: Parental type 2 diabetes mellitus increases the risk of diabetic nephropathy in offspring with type 1 diabetes mellitus. Several single nucleotide polymorphisms (SNPs) that predispose to type 2 diabetes mellitus have recently been identified. It is, however, not known whether such SNPs also confer susceptibility to diabetic nephropathy in patients with type 1 diabetes mellitus. METHODS: We genotyped nine SNPs associated with type 2 diabetes mellitus in genome-wide association studies in the Finnish population, and tested for their association with diabetic nephropathy as well as with severe retinopathy and cardiovascular disease in 2,963 patients with type 1 diabetes mellitus. Replication of significant SNPs was sought in 2,980 patients from three other cohorts. RESULTS: In the discovery cohort, rs10811661 near gene CDKN2A/B was associated with diabetic nephropathy. The association remained after robust Bonferroni correction for the total number of tests performed in this study (OR 1.33 [95% CI 1.14, 1.56], p?=?0.00045, p (36tests)?=?0.016). In the meta-analysis, the combined result for diabetic nephropathy was significant, with a fixed effects p value of 0.011 (OR 1.15 [95% CI 1.02, 1.29]). The association was particularly strong when patients with end-stage renal disease were compared with controls (OR 1.35 [95% CI 1.13, 1.60], p?=?0.00038). The same SNP was also associated with severe retinopathy (OR 1.37 [95% CI 1.10, 1.69] p?=?0.0040), but the association did not remain after Bonferroni correction (p (36tests)?=?0.14). None of the other selected SNPs was associated with nephropathy, severe retinopathy or cardiovascular disease. CONCLUSIONS/INTERPRETATION: A SNP predisposing to type 2 diabetes mellitus, rs10811661 near CDKN2A/B, is associated with diabetic nephropathy in patients with type 1 diabetes mellitus.
Resumo:
We formed the GEnetics of Nephropathy–an International Effort (GENIE) consortium to examine previously reported genetic associations with diabetic nephropathy (DN) in type 1 diabetes. GENIE consists of 6,366 similarly ascertained participants of European ancestry with type 1 diabetes, with and without DN, from the All Ireland-Warren 3-Genetics of Kidneys in Diabetes U.K. and Republic of Ireland (U.K.-R.O.I.) collection and the Finnish Diabetic Nephropathy Study (FinnDiane), combined with reanalyzed data from the Genetics of Kidneys in Diabetes U.S. Study (U.S. GoKinD). We found little evidence for the association of the EPO promoter polymorphism, rs161740, with the combined phenotype of proliferative retinopathy and end-stage renal disease in U.K.-R.O.I. (odds ratio [OR] 1.14, P = 0.19) or FinnDiane (OR 1.06, P = 0.60). However, a fixed-effects meta-analysis that included the previously reported cohorts retained a genome-wide significant association with that phenotype (OR 1.31, P = 2 × 10-9). An expanded investigation of the ELMO1 locus and genetic regions reported to be associated with DN in the U.S. GoKinD yielded only nominal statistical significance for these loci. Finally, top candidates identified in a recent meta-analysis failed to reach genome-wide significance. In conclusion, we were unable to replicate most of the previously reported genetic associations for DN, and significance for the EPO promoter association was attenuated.
Resumo:
Retinopathy is a major complication of diabetes mellitus and this condition remains a leading cause of blindness in the working population of developed countries. As diabetic retinopathy progresses a range of neuroglial and microvascular abnormalities develop although it remains unclear how these pathologies relate to each other and their net contribution to retinal damage. From a haemodynamic perspective, evidence suggests that there is an early reduction in retinal perfusion before the onset of diabetic retinopathy followed by a gradual increase in blood flow as the complication progresses. The functional reduction in retinal blood flow observed during early diabetic retinopathy may be additive or synergistic to pro-inflammatory changes, leucostasis and vaso-occlusion and thus be intimately linked to the progressive ischaemic hypoxia and increased blood flow associated with later stages of the disease. In the current review a unifying framework is presented that explains how arteriolar dysfunction and haemodynamic changes may contribute to late stage microvascular pathology and vision loss in human diabetic retinopathy.
Resumo:
Diabetic nephropathy (DN) affects about 30% of patients with type 1 diabetes (T1D) and contributes to serious morbidity and mortality. So far only the 3q21-q25 region has repeatedly been indicated as a susceptibility region for DN. The aim of this study was to search for new DN susceptibility loci in Finnish, Danish and French T1D families.