999 resultados para D13C ISOTOPE
Resumo:
Boron contents and boron, carbon and oxygen stable isotopes were determined for authigenic carbonates recovered from Ocean Drilling Program Leg 146, Oregon margin. Carbonate precipitates are the most widespread authigenic phase in the shallow accretionary wedge and carry chemical information about long-term variations in pore fluid origin and flow paths in the Cascadia subduction zone. Drilling the first ridge (toe area including the frontal thrust) and the second ridge (or Hydrate Ridge) of the prism demonstrated different fluid regimes, with higher B contents in the authigenic precipitates at the toe. The delta11B of 18 authigenic precipitates analysed ranges from 13.9 per mil to as high as 39.8 per mil, extending the upper range of previously reported carbonate delta11B values considerably. When related to the delta11B ratio of their parent solutions, these data are characteristic of fluid-related processes in accretionary prisms. Together with delta13C and delta18O, delta11B ratios of the carbonate concretions, nodules and crusts allow one to distinguish between precipitation influenced by (i) seawater, (ii) fluid reservoirs at different depth levels within the accretionary prism and (iii) cage water from dissociated gas hydrates, the latter possibly indicating a fluctuation of the bottom simulating reflector during most recent Earth's history. From this first systematic boron study on authigenic precipitates from an accretionary prism it is suggested that B contents of such carbonate crusts and concretions exceed those reported for other marine carbonates. Given the abundance of such precipitates at convergent margins, they represent a significant B sink in geochemical cycling. Isotopic compositions of the parent fluids to the carbonates mirror B chemistry of modern pore waters from convergent margins. The precipitates carry information of different subduction-related fluid processes over a certain period of time, and hence are a crucial tracer in the investigation of palaeo-fluid flow.
Resumo:
Recent deep-ocean exploration has revealed unexpectedly widespread and diverse coral ecosystems in deep water on continental shelves, slopes, seamounts, and ridge systems around the world. Origin and growth history of these cold-water coral mounds are poorly known, owing to a lack of complete stratigraphic sections through them. Here we show high-resolution oxygen isotope records of planktic foraminifers from the base to the top of Challenger Mound, southwest of Ireland, which was drilled during Integrated Ocean Drilling Program Expedition 307. Challenger Mound began to grow during isotope stage 92 (2.24 million years ago (Ma)), immediately after the onset of Northern Hemisphere glaciation and the initiation of modern stratification in the northeast Atlantic. Mound initiation was likely due to reintroduction of Mediterranean Outflow Water (MOW) and ensuing development of a density gradient with overlying northeastern Atlantic water (NEAW), where organic matter was prone to be stagnated and fueled the coral ecosystem. Coral growth continued for 11 glacial-interglacial cycles until isotopic stage 72 (1.82 Ma) with glacial siliciclastic input from the continental margin. After a long hiatus that separates the lower mound and the upper mound, coral growth restored for a short time in isotope stages 19-18 (0.8-0.7 Ma) in which sediments were either eroded or not deposited during a full glacial stage. The development pattern of the water mass interface between MOW and NEAW might have changed, because of the fluctuations of the MOW production which is responsible for the amplitude in ice volume oscillations from the low-amplitude 41 ka cycles for the lower mound to the high-amplitude 100 ka cycles for the upper mound. The average sedimentation and CaCO3 production rates of the lower mound were evaluated 27 cm/ka and 31.1 g/cm2/ka, respectively.
Resumo:
We correlated Miocene d18O increases at Ocean Drilling Program Site 747 with d18O increases previously identified at North Atlantic Deep Sea Drilling Project Sites 563 and 608. The d18O increases have been directly tied to the Geomagnetic Polarity Time Scale (GPTS) at Site 563 and 608, and thus our correlations at Site 747 provide a second-order correlation to the GPTS. Comparison of the oxygen isotope record at Site 747 with records at Sites 563 and 608 indicates that three as-yet-undescribed global Miocene d18O increases may be recognized and used to define stable isotope zones. The d18O maxima associated with the bases of Zones Mila, Milb, and Mi7 have magnetochronologic age estimates of 21.8, 18.3, and 8.5 Ma, respectively. The correlation of a d18O maximum at 70 mbsf at Site 747 to the base of Miocene isotope Zone Mi3 (13.6 Ma) provides a revised interpretation of four middle Miocene normal polarity intervals observed between 77 and 63 mbsf at Hole 747A. Oxygen isotope stratigraphy indicates that the reversed polarity interval at 70 mbsf, initially interpreted as Chronozone C5AAr, should be C5ABr. Instead of a concatenated Chronozone C5AD-C5AC with distinct Chronozones C5AB, C5AA, and C5A (as in the preliminary interpretation), d18O stratigraphy suggests that these normal polarity intervals are Chronozones C5AD, C5AC, and C5AB, whereas Chronozones C5AA-C5A are concatenated. This interpretation is supported by the d13C correlations. The upper Miocene magnetostratigraphic record at Hole 747A is ambiguous. Two upper Miocene d18O events at Site 747 can be correlated to the oxygen isotope records at Site 563 and 608 using the magnetostratigraphy derived at Hole 747B. Our chronostratigraphic revisions highlight the importance of stable isotope stratigraphy in attaining an integrated stratigraphic framework for the Miocene.