986 resultados para Cyclic voltammetric studies
Resumo:
The cell signaling cascades that mediate pigment movements in crustacean chromatophores are not yet well established, although Ca(2+) and cyclic nucleotide second messengers are involved. Here, we examine the participation of cyclic guanosine monophosphate (cGMP) in pigment aggregation triggered by red pigment concentrating hormone (RPCH) in the red ovarian chromatophores of freshwater shrimp. In Ca(2+)-containing (5.5 mmol l(-1)) saline, 10 mu mol l(-1) dibutyryl cGMP alone produced complete pigment aggregation with the same time course (approximate to 20 min) and peak velocity (approximate to 17 mu m/min) as 10(-8) mol l(-1) RPCH; however, in Ca(2+)-free saline (9 X 10(-11) mol l(-1) Ca(2+)), db-cGMP was without effect. The soluble guanylyl cyclase (GC-S) activators sodium nitroprusside (SNP, 0.5 mu mol l(-1)) and 3-morpholinosydnonimine (SIN-1, 100 mu mol l(-1)) induced moderate aggregation by themselves (approximate to 35%-40%) but did not affect RPCH-triggered aggregation. The GC-S inhibitors zinc protoporphyrin IX (ZnPP-XI, 30 mu mol l(-1)) and 6-anilino-5,8-quinolinedione (LY83583, 10 mu mol l(-1)) partially inhibited RPCH-triggered aggregation by approximate to 35%. Escherichia coli heat-stable enterotoxin (STa, 1 mu mol l(-1)), a membrane-receptor guanylyl cyclase stimulator, did not induce or affect RPCH-triggered aggregation. We propose that the binding of RPCH to an unknown membrane-receptor type activates a Ca(2+)-dependent signaling cascade coupled via cytosolic guanylyl cyclase and cGMP to protein kinase G-phosphorylated proteins that regulate aggregation-associated, cytoskeletal molecular motor activity. This is a further example of a cGMP signaling cascade mediating the effect of a crustacean X-organ neurosecretory peptide.
Resumo:
The electrocatalytic activity of Pt and RuO(2) mixed electrodes of different compositions towards methanol oxidation was investigated. The catalysts were prepared by thermal decomposition of polymeric precursors and characterized by energy dispersive X-ray, scanning electronic microscopy, X-ray diffraction and cyclic voltammetry. This preparation method allowed obtaining uniform films with controlled stoichiometry and high surface area. Cyclic voltammetry experiments in the presence of methanol showed that mixed electrodes decreased the potential peak of methanol oxidation by approximately 100 mV (RHE) when compared to the electrode containing only Pt. In addition, voltammetric experiments indicated that the Pt(0.6)Ru(0.4)O(y) electrode led to higher oxidation current densities at lower potentials. Chronoamperometry experiments confirmed the contribution of RuO(2) to the catalytic activity as well as the better performance of the Pt(0.6)Ru(0.4)O(y) electrode composition. Formic acid and CO(2) were identified as being the reaction products formed in the electrolysis performed at 400 and 600 mV. The relative formation of CO(2) was favored in the electrolysis performed at 400 mV (RHE) with the Pt(0.6)Ru(0.4)O(y) electrode. The presence of RuO(2) in Pt-Ru-based electrodes is important for improving the catalytic activity towards methanol electrooxidation. Moreover, the thermal decomposition of polymeric precursors seems to be a promising route for the production of catalysts applicable to DMFC. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
A variety of nanostructures are being investigated as functional drug carriers for treatment of a wide range of diseases, most notably cardiovascular defects, autoimmune diseases, and cancer. The aim of this present contribution is to evaluate potentially applicable nanomaterials in the diagnosis and treatment of cancer due to their photophysical and photobiological properties and complexation behavior. The delivery systems consisted of chloro-aluminum phthalocyanine associated with beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin. The preparation of the complex and its stoichiometry in an ethanol/buffer (3:1) solution were studied by spectroscopic techniques, which were defined as 1:2. The inclusion complex in the nanometer scale was observed on the basis of changes to the spectroscopic properties. The singlet oxygen production and complex photophysical parameters were determined by measuring luminescence at 1270 nm and by steady state and time resolved spectroscopic, respectively. The preparation of the complex was tested and analyzed with regard to cellular damage by visible light activation. The inclusion complex showed a higher singlet oxygen quantum yield compared with other systems and other photoactive dyes. There was also a reduction in the fluorescence quantum yield compared with the results obtained for zinc phthalocyanine in organic medium. The results reported clearly that the inclusion complex chloro-aluminum phthalocyanine/cyclodextrin showed some changes in its spectroscopy properties leading to better biodistribution and biocompatibility with a potential application in photodynamic therapy, especially in the case of neoplasy. Additionally, it also has non-oncological applications as a drug delivery system.
Resumo:
Two longitudinal experiments involving Merino sheep challenged with either bovine or ovine strains of Mycobacterium avium subsp. paratuberculosis (Map) have been conducted over a period of 54 and 35 months, respectively. Blood samples for the interferon-gamma test, the absorbed ELISA and faecal samples for bacteriological culture were taken pre-challenge and monthly post-challenge. Infections were induced with either a bovine or ovine strain of Map in separate experiments with infections being more easily established, in terms of faecal bacterial shedding and clinical disease when the challenge inoculum was prepared from gut mucosal tissue than cultured bacteria. The patterns of response for shedding and clinical disease were similar. Cell-mediated immune responses were proportionally elevated by at least an order of magnitude in all sheep dosed with either a bovine or ovine strain of Map. Conversely, antibody responses were only elevated in a relatively small proportion of infected sheep. Neither of the clinically affected tissue challenged sheep developed an antibody response despite the presence of persistent shedding and the development and decline in cell-mediated immunity. The results indicated that for sheep the interferon-gamma test may be useful for determining if a flock has been exposed to ovine Johne's disease. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Reactions of the model acylium ion (CH3)(2)N-C+=O with acyclic, exocyclic, and Spiro acetals of the general formula (RO)-O-1-(CRR4)-R-3-OR2-upole mass spectrometry. Characteristic intrinsic reactivities were observed for each of these classes of acetals. The two most Characteristic intrinsic reactivities were observed for each of these classes of acetals. The two most common reactions observed were hydride and alkoxy anion [(RO-)-O-1 and (RO-)-O-2] abstraction. Other specific reactions were also observed: (a) a secondary polar [4(+) + 2] cycloaddition for acetals bearing alpha,beta-unsaturated R-3 or R-4 substituents and (b) OH- abstraction for exocyclic and spiro acetals. These structurally diagnostic reactions, in conjunction with others observed previously for cyclic acetals, are shown to reveal the class of the acetal molecule and its ring type and substituents and to permit their recognition and distinction from other classes of isomeric molecules.
Resumo:
Nanostructured drug delivery systems (NDDS), such as liposomes, represent a growing area in biomedical research. These microheterogeneous media can be used in many biological systems to provide appropriate drug levels with a specific biodistribution. The photophysical properties of a silicon derivative of tribenzonaphthoporphyrazinato (Si-tri-PcNc) incorporated into liposome were studied by steady-state techniques, time-resolved fluorescence and laser flash photolysis. All the spectroscopy measurements performed allowed us to conclude that Si-tri-PcNc in liposome is a promising NDDS for PDT The in vitro experiments with liposomal NDDS showed that the system is not cytotoxic in darkness, but exhibits a substantial phototoxicity at 1 mu M of photosensitizer concentration and 10.0 J/cm(2) of light. These conditions are sufficient to kill about 80% of the cells.
Resumo:
In this work, we report the synthesis, characterization and catalytic properties of a vanadium oxide-silicon oxide composite xerogel prepared by a soft chemistry approach. In order to obtain such material, we submitted a vanadium pentoxide gel previously synthesized via protonation of metavanadate species to an ""in situ"" progressive polycondensation into silica gel. The material has been characterized by X-ray diffraction, infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. Further, the catalytic activity of this material was evaluated for the epoxidation of styrene and cyclooctene using iodosylbenzene, hydrogen peroxide and m-chloroperbenzoic acid as the oxidizing agent.
Resumo:
Carbon-supported catalysts containing platinum and molybdenum oxide are prepared by thermal decomposition of polymeric precursors. The Pt(y)Mo(z)O(x)/C materials are characterized by energy dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray diffraction. The catalysts present a well-controlled stoichiometry and nanometric particles. Molybdenum is present mainly as the MoO(3) orthorhombic structure, and no Pt alloys are detected. The voltammetric behavior of the electrodes is investigated; a correlation with literature results for PtMo/C catalysts prepared by other methods is established. The formation of soluble species and the aging effect are discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In situ and ex situ studies concerning the new hybrid material vanadium pentoxide xerogel in the presence of the cationic surfactant cetyl pyridinium chloride (V(2)O(5)/CPC) are presented. The in situ characterization studies revealed the presence of a lamellar structure for the V(2)O(5)/CPC hybrid material. The intercalation reaction was evidenced on the basis of the increase in the d-spacing as well as the displacement of the infrared bands toward lower energy levels. Electrochemical studies comprising the cyclic voltammetry and the electrochemical impedance spectroscopy techniques showed that the behavior of the hybrid material is considerably influenced by the electrolyte composition. The ion insertion/de-insertion into the V(2)O(5) xerogel structure accompanying the charge transfer process is influenced by the solid-state diffusion process modeled by using the finite-space Warburg element.
Resumo:
Analytical and bioanalytical methods of high-performance liquid chromatography with fluorescence detection (HPLC-FLD) were developed and validated for the determination of chloroaluminum phthalocyanine in different formulations of polymeric nanocapsules, plasma and livers of mice. Plasma and homogenized liver samples were extracted with ethyl acetate, and zinc phthalocyanine was used as internal standard. The results indicated that the methods were linear and selective for all matrices studied. Analysis of accuracy and precision showed adequate values, with variations lower than 10% in biological samples and lower than 2% in analytical samples. The recoveries were as high as 96% and 99% in the plasma and livers, respectively. The quantification limit of the analytical method was 1.12 ng/ml, and the limits of quantification of the bioanalytical method were 15 ng/ml and 75 ng/g for plasma and liver samples, respectively. The bioanalytical method developed was sensitive in the ranges of 15-100 ng/ml in plasma and 75-500 ng/g in liver samples and was applied to studies of biodistribution and pharmacokinetics of AlClPc. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Sonogashira cross-coupling reactions involving (E)-iodo vinyl stannanes and terminal acetylenes were carried out in the presence of Pd(PPh(3))(4), Cul and several amines, affording (Z)-tributylstannyl enynes in moderate to good yields (62-91%). Utilizing the catalytic system containing Pd(PPh(3))(4) (5%), Cul (10%), and TBAOH (40% in aqueous media) as activator, better yields (72-91%) and lower reaction times were achieved. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The Jabirian Corpus refers to the K. Thahirat Al-`Iskandar, ""The Book of the Treasure of Alexander"" (hereafter BTA), as one of several forgeries suggesting that alchemical secrets were hidden in inscriptions in various places. The book was neglected until 1926, when Julius Ruska discussed it in his work on the Emerald Tablet, placing the BTA within the literature related to the development of Arabic alchemy. His preliminary study became an essential reference and encouraged many scholars to work on the BTA in the following decades. Some years ago, we completed the first translation of the BTA into a Western language. The work was based on the acephalous Escorial manuscript, which we identified as a fourteenth-century copy of the BTA. This manuscript is peculiar, as part of it is encoded. After finishing our translation, we started to establish the text of the BTA. At present, the text is in process of fixation-to be followed by textual criticism-and has been the main focus of a thorough study of ours on medieval hermeticism and alchemy. A sample of the work currently in progress is presented in this paper: an analysis of the variations between different manuscripts along with a study and English translation of its alchemical chapter.
Resumo:
TNF-alpha neutralising agents such as Infliximab (Remicade(R)), Etanercept (Enbrel(R)) and the IL-1 receptor antagonist Anakinra (Kineret(R)), are currently used clinically for the treatment of many inflammatory diseases such as Crohn's disease, rheumatoid arthritis, ankylosing spondylitis, juvenile rheumatoid arthritis, psoriatic arthritis and psoriasis. These protein preparations are expensive to manufacture and administer, need to be injected and can cause allergic reactions. An alternative approach to lowering the levels of TNF-alpha and IL-1 beta in inflammatory disease, is to inhibit the enzymes that generate these cytokines using cheaper small molecules. This paper is a broad overview of the progress that has been achieved so far, with respect to small molecule inhibitor design and pharmacological studies (in animals and humans), for the metalloprotease Tumour Necrosis Factor-alpha Converting Enzyme (TACE) and the cysteine protease Caspase-1 (Interieukin-1 beta Converting Enzyme, ICE). Inhibitors of these two enzymes are currently considered to be good therapeutic targets that have the potential to provide relatively inexpensive and orally bioavailable anti-inflammatory agents in the future.
Resumo:
The supplementary motor area (SMA) is thought to play in important role in the preparation and organisation of voluntary movement. It has long been known that cortical activity begins to increase up to 2 s prior to voluntary self-initiated movement. This increasing premovement activity measured in EEG is known as the Bereitschaftspotential or readiness potential. Modern functional brain imaging methods, using event-related and time-resolved functional MRI techniques, are beginning to reveal the role of the SMA, and in particular the more anterior pre-SMA, in premovement activity associated with the readiness for action. In this paper we review recent studies using event-related time-resolved fMRI methods to examine the time-course of activation changes within the SMA throughout the preparation, readiness and execution of action. These studies suggest that the preSMA plays a common role in encoding or representing actions prior to our own voluntary self-initiated movements, during motor imagery, and from the observation of others' actions. We suggest that the pre-SMA generates and encodes motor representations which are then maintained in readiness for action. (c) 2005 Elsevier B.V. All rights reserved.