971 resultados para Cyanobacteria -- Biodegradation
Resumo:
Using low cost portable devices that enable a single analytical step for screening environmental contaminants is today a demanding issue. This concept is here tried out by recycling screen-printed electrodes that were to be disposed of and by choosing as sensory element a low cost material offering specific response for an environmental contaminant. Microcystins (MCs) were used as target analyte, for being dangerous toxins produced by cyanobacteria released into water bodies. The sensory element was a plastic antibody designed by surface imprinting with carefully selected monomers to ensure a specific response. These were designed on the wall of carbon nanotubes, taking advantage of their exceptional electrical properties. The stereochemical ability of the sensory material to detect MCs was checked by preparing blank materials where the imprinting stage was made without the template molecule. The novel sensory material for MCs was introduced in a polymeric matrix and evaluated against potentiometric measurements. Nernstian response was observed from 7.24 × 10−10 to 1.28 × 10−9 M in buffer solution (10 mM HEPES, 150 mM NaCl, pH 6.6), with average slopes of −62 mVdecade−1 and detection capabilities below 1 nM. The blank materials were unable to provide a linear response against log(concentration), showing only a slight potential change towards more positive potentials with increasing concentrations (while that ofthe plastic antibodies moved to more negative values), with a maximum rate of +33 mVdecade−1. The sensors presented good selectivity towards sulphate, iron and ammonium ions, and also chloroform and tetrachloroethylene (TCE) and fast response (<20 s). This concept was successfully tested on the analysis of spiked environmental water samples. The sensors were further applied onto recycled chips, comprehending one site for the reference electrode and two sites for different selective membranes, in a biparametric approach for “in situ” analysis.
Resumo:
Cyanobacteria deteriorate the water quality and are responsible for emerging outbreaks and epidemics causing harmful diseases in Humans and animals because of their toxins. Microcystin-LR (MCT) is one of the most relevant cyanotoxin, being the most widely studied hepatotoxin. For safety purposes, the World Health Organization recommends a maximum value of 1 μg L−1 of MCT in drinking water. Therefore, there is a great demand for remote and real-time sensing techniques to detect and quantify MCT. In this work a Fabry–Pérot sensing probe based on an optical fibre tip coated with a MCT selective thin film is presented. The membranes were developed by imprinting MCT in a sol–gel matrix that was applied over the tip of the fibre by dip coating. The imprinting effect was obtained by curing the sol–gel membrane, prepared with (3-aminopropyl) trimethoxysilane (APTMS), diphenyl-dimethoxysilane (DPDMS), tetraethoxysilane (TEOS), in the presence of MCT. The imprinting effect was tested by preparing a similar membrane without template. In general, the fibre Fabry–Pérot with a Molecular Imprinted Polymer (MIP) sensor showed low thermal effect, thus avoiding the need of temperature control in field applications. It presented a linear response to MCT concentration within 0.3–1.4 μg L−1 with a sensitivity of −12.4 ± 0.7 nm L μg−1. The corresponding Non-Imprinted Polymer (NIP) displayed linear behaviour for the same MCT concentration range, but with much less sensitivity, of −5.9 ± 0.2 nm L μg−1. The method shows excellent selectivity for MCT against other species co-existing with the analyte in environmental waters. It was successfully applied to the determination of MCT in contaminated samples. The main advantages of the proposed optical sensor include high sensitivity and specificity, low-cost, robustness, easy preparation and preservation.
Resumo:
Natural toxins such as those produced by freshwater cyanobacteria have been regarded as an emergent environmental threat. However, the impact of these water contaminants in agriculture is not yet fully understood. The aim of this work was to investigate microcystin-LR (MC-LR) toxicity in Lycopersicon esculentum and the toxin accumulation in this horticultural crop. Adult plants (2 month-old) grown in a greenhouse environment were exposed for 2 weeks to either pure MC-LR (100 μg/L) or Microcystis aeruginosa crude extracts containing 100 μg/L MC-LR. Chlorophyll fluorescence was measured, leaf proteome investigated with two-dimensional gel electrophoresis and Matrix Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF)/TOF, and toxin bioaccumulation assessed by liquid chromatography-mass spectrometry (LC-MS)/MS. Variations in several protein markers (ATP synthase subunits, Cytochrome b6-f complex iron-sulfur, oxygen-evolving enhancer proteins) highlight the decrease of the capacity of plants to synthesize ATP and to perform photosynthesis, whereas variations in other proteins (ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit and ribose-5-phosphate isomerase) suggest an increase of carbon fixation and decrease of carbohydrate metabolism reactions in plants exposed to pure MC-LR and cyanobacterial extracts, respectively. MC-LR was found in roots (1635.21 μg/kg fw), green tomatoes (5.15–5.41 μg/kg fw), mature tomatoes (10.52–10.83 μg/kg fw), and leaves (12,298.18 μg/kg fw). The results raise concerns relative to food safety and point to the necessity of monitoring the bioaccumulation of water toxins in agricultural systems affected by cyanotoxin contamination.
Resumo:
A highly Al-resistant dissimilatory sulphatereducing bacteria community was isolated from sludge of the wetland of Urgeiriça mine (community W). This community showed excellent sulphate removal at the presence of Al3+. After 27 days of incubation, 73,86 and 81% of sulphate was removed in the presence of 0.48, 0.90 and 1.30 mM of Al3+, respectively. Moreover,Al3+ was simultaneously removed: 55,85 and 78% of metal was removed in the presence of 0.48, 0.90 and 1.30 mM of Al3+, respectively. The dissociation of aluminiumlactate soluble complexes due to lactate consumption by dissimilatory sulphate-reducing bacteria can be responsible for aluminum removal, which probably precipitates as insoluble aluminium hydroxide. Phylogenetic analysis of 16S rRNA gene showed that this community was mainly composed by bacteria closely related to Desulfovibrio desulfuricans. However, bacteria affiliated to Proteus and Ralstonia were also present in the community.
Resumo:
The impact of microbial activity on the deterioration of cultural heritage is a well-recognized global problem. Glazed wall tiles constitute an important part of the worldwide cultural heritage. When exposed outdoors, biological colonization and consequently biodeterioration may occur. Few studies have dealt with this issue, as shown in the literature review on biodiversity, biodeterioration and bioreceptivity of architectural ceramic materials. Due to the lack of knowledge on the biodeteriogens affecting these assets, the characterization of microbial communities growing on Portuguese majolica glazed tiles, from Pena National Palace (Sintra, Portugal) and another from Casa da Pesca (Oeiras, Portugal) was carried out by culture and molecular biology techniques. Microbial communities were composed of microalgae, cyanobacteria, bacteria and fungi, including a new fungal species (Devriesia imbrexigena) described for the first time. Laboratory-based colonization experiments were performed to assess the biodeterioration patterns and bioreceptivity of glazed wall tiles produced in laboratory. Microorganisms previously identified on glazed tiles were inoculated on pristine and artificially aged tile models and incubated under laboratory conditions for 12 months. Phototrophic microorganisms were able to grow into glaze fissures and the tested fungus was able to form oxalates over the glaze. The bioreceptivity of artificially aged tiles was higher for phototrophic microorganisms than pristine tile models. A preliminary approach on mitigation strategies based on in situ application of commercial biocides and titanium dioxide (TiO2) nanoparticles on glazed tiles demonstrated that commercial biocides did not provide long term protection. In contrast, TiO2 treatment caused biofilm detachment. In addition, the use of TiO2 thin films on glazed wall tiles as a protective coating to prevent biological colonization was analysed under laboratorial conditions. Finally, conservation notes on tiles exposed to biological colonization were presented.
Resumo:
Release of chloroethene compounds into the environment often results in groundwater contamination, which puts people at risk of exposure by drinking contaminated water. cDCE (cis-1,2-dichloroethene) accumulation on subsurface environments is a common environmental problem due to stagnation and partial degradation of other precursor chloroethene species. Polaromonas sp. strain JS666 apparently requires no exotic growth factors to be used as a bioaugmentation agent for aerobic cDCE degradation. Although being the only suitable microorganism found capable of such, further studies are needed for improving the intrinsic bioremediation rates and fully comprehend the metabolic processes involved. In order to do so, a metabolic model, iJS666, was reconstructed from genome annotation and available bibliographic data. FVA (Flux Variability Analysis) and FBA (Flux Balance Analysis) techniques were used to satisfactory validate the predictive capabilities of the iJS666 model. The iJS666 model was able to predict biomass growth for different previously tested conditions, allowed to design key experiments which should be done for further model improvement and, also, produced viable predictions for the use of biostimulant metabolites in the cDCE biodegradation.
Resumo:
Cyanobacteria are photoautotrophic microorganisms with great potential for the biotechnological industry due to their low nutrient requirements, photosynthetic capacities and metabolic plasticity. In biotechnology, the energy sector is one of the main targets for their utilization, especially to produce the so called third generation biofuels, which are regarded as one of the best replacements for petroleum-based fuels. Although, several issues could be solved, others arise from the use of cyanobacteria, namely the need for high amounts of freshwater and contamination/predation by other microorganisms that affect cultivation efficiencies. The cultivation of cyanobacteria in seawater could solve this issue, since it has a very stable and rich chemical composition. Among cyanobacteria, the model microorganism Synechocystis sp. PCC 6803 is one of the most studied with its genome fully sequenced and genomic, transcriptomic and proteomic data available to better predict its phenotypic behaviors/characteristics. Despite suitable for genetic engineering and implementation as a microbial cell factory, Synechocystis’ growth rate is negatively affected by increasing salinity levels. Therefore, it is important to improve. To achieve this, several strategies involving the constitutive overexpression of the native genes encoding the proteins involved in the production of the compatible solute glucosylglycerol were implemented, following synthetic biology principles. A preliminary transcription analysis of selected mutants revealed that the assembled synthetic devices are functional at the transcriptional level. However, under different salinities, the mutants did not show improved robustness to salinity in terms of growth, compared with the wild-type. Nevertheless, some mutants carrying synthetic devices appear to have a better physiological response under seawater’s NaCl concentration than in 0% (w/v) NaCl.
Resumo:
Excessive accumulation of Long Chain Fatty Acids (LCFA) in methanogenic bioreactors is the cause of process failure associated to a severe decrease in methane production. In particular, fast and persistent accumulation of palmitate is critical and still not elucidated. Aerobes or facultative anaerobes were detected in those reactors, raising new questions on LCFA biodegradation. To get insight into the influence of oxygen, two bioreactors were operated under microaerophilic and anaerobic conditions, with oleate at 1 and 4 gCOD/(L d). Palmitate accumulated up to 2 and 16 gCOD/L in the anaerobic and microaerophilic reactor, respectively, which shows the importance of oxygen in this conversion. A second experiment was designed to understand the dynamics of oleate to palmitate conversion. A CSTR and a PFR were assembled in series and fed with oleate under microaerophilic conditions. HRT from 6 to 24 h were applied in the CSTR, and 14 to 52 min in the PFR. In the PFR a biofilm was formed where palmitate accounted for 82% of total LCFA. Pseudomonas was the predominant genus (42 %) in this biofilm, highlighting the role of aerobic and facultative anaerobic bacteria in LCFA bioconversion.
Resumo:
The colonization process and successional patterns of a periphytic algal community were evaluated in a Amazonian Viveiro Lake (Rio Branco, Acre, Brazil). Sampling was performed over a period of 35 days; at four-day intervals for 20 days, and then at five-day intervals. Water sampling for physical, chemical and biological analyses was done during the dry and rainy season. Glass slides were used as artificial substrates for periphyton colonization. The structural community was evaluated through population density, algae class, diversity indices and descriptive species. Species richness, diversity and evenness increased as succession progressed. While density of Bacillariophyceae, Euglenophyceae and Zygnemaphyceae increased with succession, Cyanobacteria remained dominant. Synechocystis aquatilis, Synechocystis diplococcus and Navicula pseudolanceolata were the main descriptive species in both the dry and rainy season. Cymbela tumida, Frustulia rhomboides, Trachelomonas lacustris and Closterium acicularis was correlated with an increase in hydrologic level during the rainy season. Conversely, the density of Chlamydomonas sp., Chroomonas nordstedtii, Trachelomonas volvocinopsis, Trachelomonas volvocina and Synechococcus linearis was correlated with an increase in water transparency during the dry season. In general, the periphytic algal community showed high diversity and species richness independent of season. Season also had little influence on representation of algae class and main descriptive species. However, successional patterns varied by season, and changes in hydrologic levels acted directly on the succession path of periphytic algae. More research on periphyton dynamics is needed to improve our understanding of tropical lake ecosystems, especially in Amazonian.
Resumo:
Silk fibroin (SF) is a commonly available natural biopolymer produced in specialized glands of arthropods, with a long history of use in textile production and also in health cares. The exceptional intrinsic properties of these fibers, such as self-assembly, machinability, biocompatibility, biodegradation or non-toxicity, offer a wide range of exciting opportunities [1]. It has long been recognized that silk can be a rich source of inspiration for designing new materials with tailored properties, enhanced performance and high added value for targeted applications, opening exciting new prospects in the domain of materials science and related technological fields, including bio-friendly integration, miniaturization and multifunctionalization. In recent years it has been demonstrated that fibroin is an excellent material for active components in optics and photonics devices. Progress in new technological fields such as optics, photonics and electronics are emerging [2,3]. The incorporation of polymer electrolytes as components of various devices (advanced batteries, smart windows, displays and supercapacitors) offers significant advantages with respect to traditional electrolytes, including enhanced reliability and improved safety. SF films are particularly attractive in this context. They have near-perfect transparency across the VIS range, surface flatness (together with outstanding mechanical robustness), ability to replicate patterned substrates and their thickness may be easily tailored from a few nanometers to hundreds of micrometers through spin-casting of a silk solution into subtract. Moreover, fibroin can be added to other biocomponents or salts in order to modify the biomaterial properties leading to optimized and total different functions. Preliminary tests performed with a prototype electrochromic device (ECD) incorporating SF films doped with lithium triflate and lithium tetrafluoroborate (LiTFSI and LiBF4, respectively) as electrolyte and WO3 as cathodic electrochromic layer, are extremely encouraging. Aiming to evaluate the performance of the ion conducting SF membranes doped with LiTFSI and LiBF4 (SF-Li), small ECDs with glass/ITO/WO3/SF-Li/CeO2-TiO2/ITO/glass configuration were assembled and characterized. The device exhibited, after 4500 cycles, the insertion of charge at -3.0 V reached –1.1 mC.cm-2 in 15 s. After 4500 cycles the window glass-staining, glass/ITO/WO3/Fibrin-Li salts electrolyte/CeO2-TiO2/ITO/glass configuration was reversible and featured a T 8 % at λ = 686 nm
Resumo:
Current societal challenges increasingly demand the need to seek for efficient and sustainable solutions to daily problems. Construction, as a result of its activity, is one of the main responsible industry for the exploitation of resources and greenhouse gas emissions. In this way, several research works are being undertaken to change some of the current practices. This paper presents the work being done at University of Minho to study de degradation of natural fibers when used as a sustainable solution for soil reinforcement. Jute and sisal fibrous structures (0º/90º) were studied in terms of their degradation over time, when incorporated into soil and when subject to accelerated aging tests in a QUV weathering test equipment. Results show that the process of biodegradation of natural fibers is clearly accelerated by the action of temperature, moisture and solar radiation, explaining further degradation of jute and sisal fibers when exposed to these factors, although more pronounced in jute fabric structures.
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica
Resumo:
Olive mill wastewaters (OMW) and vinasses (VS) are effluents produced respectively by olive mills and wineries, both sectors are of great economic importance in Mediterranean countries. These effluents cause a large environmental impact, when not properly processed, due to their high concentration of phenolic compounds, COD and colour. OMW may be treated by biological processes but, in this case, a dilution is necessary, increasing water consumption. The approach here in proposed consists on the bioremediation of OMW and VS by filamentous fungi. In a screening stage, three fungi (Aspergillus ibericus, Aspergillus uvarum, Aspergillus niger) were selected to bioremediate undiluted OMW, two-fold diluted OMW supplemented with nutrients, and a mixture of OMW and VS in the proportion 1:1 (v/v). Higher reductions of phenolic compounds, colour and COD were achieved mixing both residues; with A. uvarum providing the best results. In addition, the production of enzymes was also evaluated during this bioremediation process, detecting in all cases lipolytic, proteolytic and tannase activities. A. ibericus, A. uvarum and A. niger achieved the highest value of lipase (1253.7 ± 161.2 U/L), protease (3700 ± 124.3 U/L) and tannase (284.4 ± 12.1 U/L) activities, respectively. Consequently, this process is an interesting alternative to traditional processes to manage these residues, providing simultaneously high economic products, which can be employed in the same industries.
Resumo:
The occurrence of mycotoxigenic moulds such as Aspergillus, Penicillium and Fusarium in food and feed has an important impact on public health, by the appearance of acute and chronic mycotoxicoses in humans and animals, which is more severe in the developing countries due to lack of food security, poverty and malnutrition. This mould contamination also constitutes a major economic problem due the lost of crop production. A great variety of filamentous fungi is able to produce highly toxic secondary metabolites known as mycotoxins. Most of the mycotoxins are carcinogenic, mutagenic, neurotoxic and immunosuppressive, being ochratoxin A (OTA) one of the most important. OTA is toxic to animals and humans, mainly due to its nephrotoxic properties. Several approaches have been developed for decontamination of mycotoxins in foods, such as, prevention of contamination, biodegradation of mycotoxins-containing food and feed with microorganisms or enzymes and inhibition or absorption of mycotoxin content of consumed food into the digestive tract. Some group of Gram-positive bacteria named lactic acid bacteria (LAB) are able to release some molecules that can influence the mould growth, improving the shelf life of many fermented products and reducing health risks due to exposure to mycotoxins. Some LAB are capable of mycotoxin detoxification. Recently our group was the first to describe the ability of LAB strains to biodegrade OTA, more specifically, Pediococcus parvulus strains isolated from Douro wines. The pathway of this biodegradation was identified previously in other microorganisms. OTA can be degraded through the hydrolysis of the amide bond that links the L-β-phenylalanine molecule to the ochratoxin alpha (OTα) a non toxic compound. It is known that some peptidases from different origins can mediate the hydrolysis reaction like, carboxypeptidase A an enzyme from the bovine pancreas, a commercial lipase and several commercial proteases. So, we wanted to have a better understanding of this OTA degradation process when LAB are involved and identify which molecules where present in this process. For achieving our aim we used some bioinformatics tools (BLAST, CLUSTALX2, CLC Sequence Viewer 7, Finch TV). We also designed specific primers and realized gene specific PCR. The template DNA used came from LAB strains samples of our previous work, and other DNA LAB strains isolated from elderberry fruit, silage, milk and sausages. Through the employment of bioinformatics tools it was possible to identify several proteins belonging to the carboxypeptidase family that participate in the process of OTA degradation, such as serine type D-Ala-D-Ala carboxypeptidase and membrane carboxypeptidase. In conclusions, this work has identified carboxypeptidase proteins being one of the molecules present in the OTA degradation process when LAB are involved.
Resumo:
Lactic acid bacteria (LAB) play a key role in the biopreservation of a wide range of fermented food products, such as yogurt, cheese, fermented milks, meat, fish, vegetables (sauerkraut, olives and pickles), certain beer brands, wines and silage, allowing their safe consumption, which gave to these bacteria a GRAS (Generally Recognised as Safe) status. Besides that, the use of LAB in food and feed is a promising strategy to reduce the exposure to dietary mycotoxins, improving their shelf life and reducing health risks, given the unique mycotoxin decontaminating characteristic of some LAB. Mycotoxins present carcinogenic, mutagenic, teratogenic, neurotoxic and immunosuppressive effects over animals and Humans, being the most important ochratoxin A (OTA), aflatoxins (AFB1), trichothecenes, zearalenone (ZEA), fumonisin (FUM) and patulin. In a previous work of our group it was observed OTA biodegradation by some strains of Pediococcus parvulus isolated from Douro wines. So, the aim of this study was to enlarge the screening of the biodetoxification over more mycotoxins besides OTA, including AFB1, and ZEA. This ability was checked in a collection of LAB isolated from vegetable (wine, olives, fruits and silage) and animal (milk and dairy products, sausages) sources. All LAB strains were characterized phenotypically (Gram, catalase) and genotypically. Molecular characterisation of all LAB strains was performed using genomic fingerprinting by MSP- PCR with (GTG)5 and csM13 primers. The identification of the isolates was confirmed by 16S rDNA sequencing. To study the ability of LAB strains to degrade OTA, AFB1 and ZEA, a MRS broth medium was supplemented with 2.0 g/mL of each mycotoxin. For each strain, 2 mL of MRS supplemented with the mycotoxins was inoculated in triplicate with 109 CFU/mL. The culture media and bacterial cells were extracted by the addition of an equal volume of acetonitrile/methanol/acetic acid (78:20:2 v/v/v) to the culture tubes. A 2 mL sample was then collected and filtered into a clean 2 mL vial using PP filters with 0.45 m pores. The samples were preserved at 4 °C until HPLC analysis. Among LAB tested, 10 strains isolated from milk were able to eliminate AFB1, belonging to Lactobacillus casei (7), Lb. paracasei (1), Lb. plantarum (1) and 1 to Leuconostoc mesenteroides. Two strains of Enterococcus faecium and one of Ec. faecalis from sausage eliminated ZEA. Concerning to strains of vegetal origin, one Lb. plantarum isolated from elderberry fruit, one Lb. buchnerii and one Lb. parafarraginis both isolated from silage eliminated ZEA. Other 2 strains of Lb. plantarum from silage were able to degrade both ZEA and OTA, and 1 Lb. buchnerii showed activity over AFB1. These enzymatic activities were also verified genotypically through specific gene PCR and posteriorly confirmed by sequencing analysis. In conclusion, due the ability of some strains of LAB isolated from different sources to eliminate OTA, AFB1 and ZEA one can recognize their potential biotechnological application to reduce the health hazards associated with these mycotoxins. They may be suitable as silage inoculants or as feed additives or even in food industry.