973 resultados para Creches - Álvares Machado (SP)
Resumo:
Glycogen phosphorylase (GlgP, EC 2.4.1.1) catalyzes the cleavage of glycogen into glucose-1-phosphate (Glc-1-P), the first step in glycogen catabolism. Two glgP homologues are found in the genome of Synechocystis sp. PCC 6803, a unicellular cyanobacterium: sll1356 and slr1367. We report on the different functions of these glgP homologues. sll1356, rather than slr1367, is essential for growth at high temperatures. On the other hand, when CO2-fixation and the supply of glucose are both limited, slr1367 is the key factor in glycogen metabolism. In cells growing autotrophically, sll1356 plays a more important role in glycogen digestion than slr1367. This functional divergence is also supported by a phylogenetic analysis of glgP homologues in cyanobacteria.
Resumo:
Unlike those of the wild-type strain, proheterocysts of the Anabaena sp. strain PCC 7120 hetC strain keep dividing. ftsZ, the most critical cell division gene, is up-regulated in hetC proheterocysts. Heterocyst differentiation genes hglD, hglE, patB, nijB, and xisA are no longer expressed in the hetC mutant. hetC also regulates the expression of patA, a pattern formation gene.
Resumo:
It was found that reactive oxygen species in Anabaena cells increased under simulated microgravity provided by clinostat. Activities of intracellular antioxidant enzymes, such as superoxide dismutase, catalase were higher than those in the controlled samples during the 7 days' experiment. However, the contents of gluathione, an intracellular antioxidant, decreased in comparison with the controlled samples. The results suggested that microgravity provided by clinostat might break the oxidative/antioxidative balance. It indicated a protective mechanism in algal cells, that the total antioxidant system activity increased, which might play an important role for algal cells to adapt the environmental stress of microgravity. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The potential endocrine disrupting effects and other toxicity effects on aquatic biota resulted from food uptake was simulated by feeding the laboratory cultured rare minnow(Gobiocypris rarus) with field collected Limnodrilus sp. The results indicated that the food chain processes affected significantly the growth, slightly reduced gonadosomatic indices, and elevated hepatosomatic indices. There was an obvious vitellogenin(VTG) induction, which generally only occurred in mature female, in the serum of juvenile rare minnow and mature male when fed with Limnodrilus sp. In addition, the rare minnow feeding on Limnodrilus sp. had significantly high renal indices, it meant obvious renal hyperplasia. The present work suggested that. Limnodrilus sp. from field water may contain toxic pollutants and could lead to endocrine disruption effects to the predators. It was concluded that endocrine disruptors may not only be assimilated through water, but also be bioconcentrated through food web. The results also suggested the importance of food selection in conducting the study of endocrine disruption effects using sensitive species.
Resumo:
Anabaena sp. PCC; 7120 was mutagenized by transposon Tn5-1087b, generating a mutant whose heterocysts lack the envelope polysaccharide layer. The transposon was located between nucleotides 342 and 343 of alr0117, a 918 bp gene encoding a histidine kinase for a two-component regulatory system. Complementation of the mutant with a DNA fragment containing alr0117 and targeted inactivation of the gene confirmed that alr0117 is involved in heterocyst development. RT-PCR showed that alr0117 was constitutively expressed in the presence or absence of a combined-nitrogen source. hepA and patB, the two genes turned on during wild-type heterocyst development, were no longer activated in an alr0117-null mutant. The two-component signal transduction system involving alr0117 may control the formation of the envelope polysaccharide layer and certain late events essential to the function of heterocysts.
Resumo:
In cyanobacteria, the isiA gene is required for cell adaptation to oxidative damage caused by the absence of iron. We show here that a putative Ser/Thr kinase gene, pkn22 (alr2052), is activated by iron deficiency and oxidative damage in Anabaena sp. PCC 7120. A pkn22 insertion mutant is unable to grow when iron is limiting. pkn22 regulates the expression of isiA (encoding CP43') but not of isiB (encoding flavodoxin) and psbC (CP43). Fluorescence measurement at 77 K reveals the absence of the typical signature of CP43' associated with photosystem I in the mutant under iron-limiting conditions. We propose that Pkn22 is required for the function of isiA/CP43' and constitutes a regulatory element necessary for stress response. (C) 2003 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
The unicellular cyanobacterium Synechocystis sp. PCC6803 can grow heterotrophically in complete darkness, given that a brief period of illumination is supplemented every day (light-activated heterotrophic growth, LAHG), or under very weak ( < 0.5 mumol m(-2) s(-1)) but continuous light. By random insertion of the genome with an antibiotic resistance cassette, mutants defective in LAHG were generated. In two identical mutants, sll0886, a tetratricopeptide repeat (TPR)-family membrane protein gene, was disrupted. Targeted insertion of sll0886 and three downstream genes showed that the phenotype was not due to a polar effect. The sll0886 mutant shows normal photoheterotrophic growth when the light intensity is at 2.5 mumol m(-2) s(-1) or above, but no growth at 0.5 mumol m(-2) s(-1). Homologs to sll0886 are also present in cyanobacteria that are not known of LAHG. sll0886 and homologs may be involved in controlling different physiological processes that respond to light of low fluence. (C) 2003 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
A unicellular marine picoplankton, Nannochloropsis sp., was grown under CO2-enriched photoautotrophic or/and acetate-added mixotrophic conditions. Photoautotrophic conditions with enriched CO2 of 2800 mul CO2 l(-1) and aeration gave the highest biomass yield (634 mg dry wt l(-1)), the highest total lipid content (9% of dry wt), total fatty acids (64 mg g(-1) dry wt), polyunsaturated fatty acids (35% total fatty acids) and eicosapentaenoic acid (EPA, 20:5omega3) (16 mg g(-1) dry wt or 25% of total fatty acids). Mixotrophic cultures gave a greater protein content but less carbohydrates. Adding sodium acetate (2 mM) decreased the amounts of the total fatty acids and EPA. Elevation of CO2 in photoautotrophic culture thus enhances growth and raises the production of EPA in Nannochloropsis sp.
Resumo:
Tylopharynx clariamphida sp. n. is described from muddy sand collected in Anhui Province, China. It can be distinguished from T foetida (Butschli, 1874), the type and only species of the genus, by numerous characters: having 24 to 26 prominent and clearly separated longitudinal ridges, a higher lip region with no hint of a cephalic framework, more prominent amphidial foveae in lateral view, wider and more posteriorly located amphidial apertures, smaller basal knobs of stoma, longer metacorpus, more enlarged phasmids, shorter spicules with shorter digitate terminus, shorter reflexed part of testis, and thicker gubernaculum with more angular shape. For comparison, an expanded description is given for T foetida from Belgium, and SEM photographs of both species are provided.
Resumo:
A new highly pathogenic muscle-infecting species of the genus Myxobolus Butschli, 1882 is described from the Prussian carp, Carassius gibelio (Bloch, 1782) using spore morphology and SSU rDNA sequence data. Phylogenetic analyses elucidated relationship of the newly described Myxobolus lentisuturalis to other Myxobolus species and supported its position of an independent species.
Resumo:
Linear DNA, consisting of a drug-resistance marker and long flanking sequences, was synthesized by one-step polymerase chain reaction after a three-piece ligating reaction. Chlorophyll synthesis genes, chlH and chIL in Synechocystis sp. PCC 6803, were replaced by a kanamycin-resistance marker through double recombinations with flanking homology regions. Under LAHG conditions, the chIL but not chlH mutant stopped chlorophyll synthesis, while both synthesized chlorophyll in the light.
Resumo:
The study of inland free-living nematodes is relatively imperfect in China, only seventeen papers were previously published. Since the early researches in 20-30s, few works have been accomplished until 80s. Altogether 171 taxa were formerly recorded, among which, over eighty species have been re-combined. A checklist of the former records with notes on their distribution is presented in this paper. Recently, the function of free-living nematodes has received much attention from Chinese zoologists. Hence, the present authors carried out their studies with emphasis on taxonomy of inland nematodes. During the survey of freshwater lakes, two species are found to be nem to science. Aphanonchus orientalis sp. nov. is characterized by having sclerotized vagina, the presence of 10-11 tubular supplements and 42-62 alveoli supplements in males, but no alveoli in females. Daptonema limnobia sp, nov. is distinguished from other species of the genus in the presence of larger and more anteriorly located amphids, shorter bifurcated spicules, smaller apophysis of gubernaculum, shorter terminal setae, and postvulval uterine sac in females.
Resumo:
A mutant of Anabaena sp. strain PCC7120 requiring high CO2 was generated using Tn5 mutagenesis. This is the first data for a filamentous cyanobacterium. The mutant was capable of growing at 5% CO2, but incapable of growing at air levels of CO2. Southern hybridization analysis indicated that the Anabaena genome was inserted by the transposon at one site. The apparent photosynthetic affinity of the mutant to external dissolved inorganic carbon (DIC) was about 300 times lower that of the wild type (WT), and the medium alkalization rate as well as the carboxysomal carbonic anhydrase activity of the mutant was also lower than those of the WT. When the mutant was transferred from the culture medium bubbled with 5% CO2 to higher DIC (8.4% CO2) or 1% CO2, it showed similar responses to the WT. However, aberrant carboxysomes were found in the mutant cells through ultrastructural analysis, indicating it was most probably the wrong organization of the carboxysomes that eventually led to the inefficient operation of carboxysomal carbonic anhydrase and the subsequent defectiveness of the mutant in utilizing DIC.
Resumo:
Parodontophora limnophila sp. nov. is described from Poyang Lake, the largest freshwater lake of China. It is characterized by having an amphid with its posterior end close to the base of the stoma, relatively short cephalic setae, opisthocephalic setae arranged as two subdorsal groups of three longitudinally arranged setae and two single subventral setae, excretory pore at the level of the anterior part of the stoma and renette gland 34-47% of the oesophageal length. To date, the new species is the only Parodontophora species found in freshwater habitats.
Resumo:
A high-CO2-requiring mutant of Synechococcus sp. PCC7942 las been isolated after chemical mutagenesis of ethyl methane sulphonate (EMS). It was able to grow at 4% CO2, but not under ambient CO2. The initial screening of the mutant showed that the genetic reversion rate was about 10(-7) and death occurred 2 -3 days after being transferred from 4% CO2 to the ambient air. Its photosynthetic dependence on external dissolved inorganic carbon was higher than that of the wild type cells, but its carbonic anhydrase activity was comparatively low. In the ultrastructural level, various types of aberrant carboxysomes appeared in the mutant cells: rod-shaped carboxysomes, irregular carboxysomes and the "empty-inclusion carboxysomes" with increasing number of glycogen granules surrounding the thylakoids. All these alterations indicated that the mutant was defective in utilizing the external CO2. The induction of carboxysomes by lower levels of CO2 and the biogenesis of carboxysomes are herein discussed.