843 resultados para Cortical dysplasia
Resumo:
OBJECTIVES The dental follicle plays an important role in tooth eruption by providing key regulators of osteogenesis and bone resorption. Patients with cleidocranial dysplasia (CCD) exhibit delayed tooth eruption in combination with increased bone density in the maxilla and mandible, suggesting disturbances in bone remodeling. The aim of this study was to determine the expression of genes relevant for tooth eruption and bone remodeling in the dental follicles of patients with CCD and normal subjects. MATERIAL AND METHODS Thirteen dental follicles were isolated from five unrelated patients with CCD, and fourteen dental follicles were obtained from 10 healthy individuals. All teeth were in the intraosseous phase of eruption. The expression of RANK, RANKL, OPG, and CSF-1 was determined by quantitative RT-PCR. RESULTS In patients with CCD, the mRNA levels of RANK, OPG, and CSF-1 were significantly elevated compared with the control group. Accordingly, the ratios of RANKL/OPG and RANKL/RANK mRNAs were significantly decreased in patients with CCD. CONCLUSION The observed alterations in the expression and ratios of the aforementioned factors in the dental follicle of CCD individuals suggest a disturbed paracrine signaling for bone remodeling that could be responsible for the impaired tooth eruption seen in these patients.
Resumo:
BACKGROUND In Mongolia, adequate early diagnosis and treatment of developmental hip dysplasia (DDH) have been unavailable and its incidence was unknown. We determined the incidence of ultrasonographic DDH in newborns and established adequate procedures for diagnosis and treatment of DDH at the largest maternity hospital in Ulaanbaatar, Mongolia. METHODOLOGY/PRINCIPAL FINDINGS During one year (Sept 2010 - Aug 2011) we assessed the hips newborns using ultrasound and Graf's classification of DDH. 8,356 newborns were screened; median age at screening was 1 day. We identified 14,873 Type 1 (89.0%), 1715 Type 2a (10.3%), 36 Type 2c (0.2%), 70 Type D (0.4%), 14 Type 3 (0.08%), and 4 Type 4 hips (0.02%). Children with Type 1 hips (normal) were discharged. Children with Type 2a hips (physiologically immature) received follow-up ultrasounds at monthly intervals. Children with Type 2c to 4 (DDH; deformed or misaligned hip joint) hips were treated with a Tubingen hip flexion splint and also followed up. The hip abnormalities resolved to mature hips in all children who were followed up. There was no evidence for severe treatment related complications. CONCLUSION/SIGNIFICANCE This study suggests that the incidence of DDH in Mongolian neonates is comparable to that in neonates in Europe. Early ultrasound-based assessment and splinting treatment of DDH led to mature hips in all children followed up. Procedures are feasible and will be continued.
Resumo:
BACKGROUND -The value of standard two-dimensional transthoracic echocardiographic (TTE) parameters for risk stratification in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is controversial. METHODS AND RESULTS -We investigated the impact of right ventricular fractional area change (FAC) and tricuspid annulus plane systolic excursion (TAPSE) for prediction of major adverse cardiovascular events (MACE) defined as the occurrence of cardiac death, heart transplantation, survived sudden cardiac death, ventricular fibrillation, sustained ventricular tachycardia or arrhythmogenic syncope. Among 70 patients who fulfilled the 2010 ARVC/D Task Force Criteria and underwent baseline TTE, 37 (53%) patients experienced a MACE during a median follow-up period of 5.3 (IQR 1.8-9.8) years. Average values for FAC, TAPSE, and TAPSE indexed to body surface area (BSA) decreased over time (p=0.03 for FAC, p=0.03 for TAPSE and p=0.01 for TAPSE/BSA, each vs. baseline). In contrast, median right ventricular end-diastolic area (RVEDA) increased (p=0.001 vs. baseline). Based on the results of Kaplan-Meier estimates, the time between baseline TTE and experiencing MACE was significantly shorter for patients with FAC <23% (p<0.001), TAPSE <17mm (p=0.02) or right atrial (RA) short axis/BSA ≥25mm/m(2) (p=0.04) at baseline. A reduced FAC constituted the strongest predictor of MACE (hazard ratio 1.08 per 1% decrease; 95% confidence interval 1.04-1.12; p<0.001) on bivariable analysis. CONCLUSIONS -This long-term observational study indicates that TAPSE and dilation of right-sided cardiac chambers are associated with an increased risk for MACE in ARVC/D patients with advanced disease and a high risk for adverse events. However, FAC is the strongest echocardiographic predictor of adverse outcome in these patients. Our data advocate a role for TTE in risk stratification in patients with ARVC/D, although our results may not be generalizable to lower risk ARVC/D cohorts.
Resumo:
Bone mass, bone geometry and its changes are based on trabecular and cortical bone remodeling. Whereas the effects of estrogen loss, rheumatoid arthritis (RA), glucocorticoid (GC) and bisphosphonate (BP) on trabecular bone remodeling have been well described, the effects of these conditions on the cortical bone geometry are less known. The present review will report current knowledge on the effects of RA, GC and BP on cortical bone geometry and its clinical relevance. Estrogen deficiency, RA and systemic GC lead to enhanced endosteal bone resorption. While in estrogen deficiency and under GC therapy endosteal resorption is insufficiently compensated by periosteal apposition, RA is associated with some periosteal bone apposition resulting in a maintained load-bearing capacity and stiffness. In contrast, BP treatment leads to filling of endosteal bone cavities at the epiphysis; however, periosteal apposition at the bone shaft seems to be suppressed. In summary, estrogen loss, RA and GC show similar effects on endosteal bone remodeling with an increase in bone resorption, whereas their effect on periosteal bone remodeling may differ. Despite over 50 years of GC therapy and over 25 years of PB therapy, there is still need for better understanding of the skeletal effects of these drugs as well as of inflammatory disease such as RA on cortical bone remodeling.
Resumo:
OBJECTIVES To assess the feasibility of using volumetric capnography in spontaneously breathing small infants and its ability to discriminate between infants with and without bronchopulmonary dysplasia (BPD). STUDY DESIGN Lung function variables for 231 infants (102 term, 52 healthy preterm, 77 BPD), matched for post-conceptional age of 44 weeks, were collected. BPD was defined as supplemental oxygen requirement at 36 weeks post-menstrual age. Tidal breath-by-breath volume capnograms were obtained by mainstream capnography. The capnographic slope of phase II (SII) and slope of phase III (SIII) were calculated and compared between study groups. The effect of BPD, tidal volume (VT), respiratory rate (RR), and prematurity on the magnitude of the slopes was assessed. RESULTS SII was steeper in infants with BPD (100 ± 28/L) compared with healthy preterm (88 ± 22/L; P = .007) and term infants (79 ± 18/L; P < .001), but this finding was attributed to differences in VT, RR, and gestational age. SIII was steeper in the BPD group (26.8 ± 14.1/L) compared with healthy preterm (16.2 ± 6.2/L; P < .001) and term controls (14.8 ± 5.4/L; P < .001). BPD was a significant predictor of SIII independently of VT, RR, and gestational age. The ability of SIII to discriminate between BPD and controls was significantly higher compared with lung clearance index (area under the curve 0.83 vs 0.56; P < .001). CONCLUSIONS Volumetric capnography may provide valuable information regarding functional lung alterations related to BPD and might be considered as an alternative to more involved lung function techniques for monitoring chronic lung disease during early infancy.
Resumo:
Recombinant human erythropoietin (EPO) has been successfully tested as neuroprotectant in brain injury models. The first large clinical trial with stroke patients, however, revealed negative results. Reasons are manifold and may include side-effects such as thrombotic complications or interactions with other medication, EPO concentration, penetration of the blood-brain-barrier and/or route of application. The latter is restricted to systemic application. Here we hypothesize that EPO is neuroprotective in a rat model of acute subdural hemorrhage (ASDH) and that direct cortical application is a feasible route of application in this injury type. The subdural hematoma was surgically evacuated and EPO was applied directly onto the surface of the brain. We injected NaCl, 200, 2000 or 20,000IU EPO per rat i.v. at 15min post-ASDH (400μl autologous venous blood) or NaCl, 0.02, 0.2 or 2IU per rat onto the cortical surface after removal of the subdurally infused blood t at 70min post-ASDH. Arterial blood pressure (MAP), blood chemistry, intracranial pressure (ICP), cerebral blood flow (CBF) and brain tissue oxygen (ptiO2) were assessed during the first hour and lesion volume at 2days after ASDH. EPO 20,000IU/rat (i.v.) elevated ICP significantly. EPO at 200 and 2000IU reduced lesion volume from 38.2±0.6mm(3) (NaCl-treated group) to 28.5±0.9 and 22.2±1.3mm(3) (all p<0.05 vs. NaCl). Cortical application of 0.02IU EPO after ASDH evacuation reduced injury from 36.0±5.2 to 11.2±2.1mm(3) (p=0.007), whereas 0.2IU had no effect (38.0±9.0mm(3)). The highest dose of both application routes (i.v. 20,000IU; cortical 2IU) enlarged the ASDH-induced damage significantly to 46.5±1.7 and 67.9±10.4mm(3) (all p<0.05 vs. NaCl). In order to test whether Tween-20, a solvent of EPO formulation 'NeoRecomon®' was responsible for adverse effects two groups were treated with NaCl or Tween-20 after the evacuation of ASDH, but no difference in lesion volume was detected. In conclusion, EPO is neuroprotective in a model of ASDH in rats and was most efficacious at a very low dose in combination with subdural blood removal. High systemic and topically applied concentrations caused adverse effects on lesion size which were partially due to increased ICP. Thus, patients with traumatic ASDH could be treated with cortically applied EPO but with caution concerning concentration.
Resumo:
Human pluripotent stem cells are a powerful tool for modeling brain development and disease. The human cortex is composed of two major neuronal populations: projection neurons and local interneurons. Cortical interneurons comprise a diverse class of cell types expressing the neurotransmitter GABA. Dysfunction of cortical interneurons has been implicated in neuropsychiatric diseases, including schizophrenia, autism, and epilepsy. Here, we demonstrate the highly efficient derivation of human cortical interneurons in an NKX2.1::GFP human embryonic stem cell reporter line. Manipulating the timing of SHH activation yields three distinct GFP+ populations with specific transcriptional profiles, neurotransmitter phenotypes, and migratory behaviors. Further differentiation in a murine cortical environment yields parvalbumin- and somatostatin-expressing neurons that exhibit synaptic inputs and electrophysiological properties of cortical interneurons. Our study defines the signals sufficient for modeling human ventral forebrain development in vitro and lays the foundation for studying cortical interneuron involvement in human disease pathology.
Resumo:
Voltage-dependent calcium channels (VDCCs) serve a wide range of physiological functions and their activity is modulated by different neurotransmitter systems. GABAergic inhibition of VDCCs in neurons has an important impact in controlling transmitter release, neuronal plasticity, gene expression and neuronal excitability. We investigated the molecular signalling mechanisms by which GABAB receptors inhibit calcium-mediated electrogenesis (Ca2+ spikes) in the distal apical dendrite of cortical layer 5 pyramidal neurons. Ca2+ spikes are the basis of coincidence detection and signal amplification of distal tuft synaptic inputs characteristic for the computational function of cortical pyramidal neurons. By combining dendritic whole-cell recordings with two-photon fluorescence Ca2+ imaging we found that all subtypes of VDCCs were present in the Ca2+ spike initiation zone, but that they contribute differently to the initiation and sustaining of dendritic Ca2+ spikes. Particularly, Cav1 VDCCs are the most abundant VDCC present in this dendritic compartment and they generated the sustained plateau potential characteristic for the Ca2+ spike. Activation of GABAB receptors specifically inhibited Cav1 channels. This inhibition of L-type Ca2+ currents was transiently relieved by strong depolarization but did not depend on protein kinase activity. Therefore, our findings suggest a novel membrane-delimited interaction of the Gi/o-βγ-subunit with Cav1 channels identifying this mechanism as the general pathway of GABAB receptor-mediated inhibition of VDCCs. Furthermore, the characterization of the contribution of the different VDCCs to the generation of the Ca2+ spike provides new insights into the molecular mechanism of dendritic computation.
Resumo:
BACKGROUND: Gray matter lesions are known to be common in multiple sclerosis (MS) and are suspected to play an important role in disease progression and clinical disability. A combination of magnetic resonance imaging (MRI) techniques, double-inversion recovery (DIR), and phase-sensitive inversion recovery (PSIR), has been used for detection and classification of cortical lesions. This study shows that high-resolution three-dimensional (3D) magnetization-prepared rapid acquisition with gradient echo (MPRAGE) improves the classification of cortical lesions by allowing more accurate anatomic localization of lesion morphology. METHODS: 11 patients with MS with previously identified cortical lesions were scanned using DIR, PSIR, and 3D MPRAGE. Lesions were identified on DIR and PSIR and classified as purely intracortical or mixed. MPRAGE images were then examined, and lesions were re-classified based on the new information. RESULTS: The high signal-to-noise ratio, fine anatomic detail, and clear gray-white matter tissue contrast seen in the MPRAGE images provided superior delineation of lesion borders and surrounding gray-white matter junction, improving classification accuracy. 119 lesions were identified as either intracortical or mixed on DIR/PSIR. In 89 cases, MPRAGE confirmed the classification by DIR/PSIR. In 30 cases, MPRAGE overturned the original classification. CONCLUSION: Improved classification of cortical lesions was realized by inclusion of high-spatial resolution 3D MPRAGE. This sequence provides unique detail on lesion morphology that is necessary for accurate classification.
Resumo:
BACKGROUND Areal bone mineral density is predictive for fracture risk. Microstructural bone parameters evaluated at the appendicular skeleton by high-resolution peripheral quantitative computed tomography (HR-pQCT) display differences between healthy patients and fracture patients. With the simple geometry of the cortex at the distal tibial diaphysis, a cortical index of the tibia combining material and mechanical properties correlated highly with bone strength ex vivo. The trabecular bone score derived from the scan of the lumbar spine by dual-energy X-ray absorptiometry (DXA) correlated ex vivo with the micro architectural parameters. It is unknown if these microstructural correlations could be made in healthy premenopausal women. METHODS Randomly selected women between 20-40 years of age were examined by DXA and HR-pQCT at the standard regions of interest and at customized sub regions to focus on cortical and trabecular parameters of strength separately. For cortical strength, at the distal tibia the volumetric cortical index was calculated directly from HR-pQCT and the areal cortical index was derived from the DXA scan using a Canny threshold-based tool. For trabecular strength, the trabecular bone score was calculated based on the DXA scan of the lumbar spine and was compared with the corresponding parameters derived from the HR-pQCT measurements at radius and tibia. RESULTS Seventy-two healthy women were included (average age 33.8 years, average BMI 23.2 kg/m(2)). The areal cortical index correlated highly with the volumetric cortical index at the distal tibia (R = 0.798). The trabecular bone score correlated moderately with the microstructural parameters of the trabecular bone. CONCLUSION This study in randomly selected premenopausal women demonstrated that microstructural parameters of the bone evaluated by HR-pQCT correlated with the DXA derived parameters of skeletal regions containing predominantly cortical or cancellous bone. Whether these indexes are suitable for better predictions of the fracture risk deserves further investigation.
Resumo:
BACKGROUND In postmenopausal women, yearly intravenous zoledronate (ZOL) compared to placebo (PLB) significantly increased bone mineral density (BMD) at lumbar spine (LS), femoral neck (FN), and total hip (TH) and decreased fracture risk. The effects of ZOL on BMD at the tibial epiphysis (T-EPI) and diaphysis (T-DIA) are unknown. METHODS A randomized controlled ancillary study of the HORIZON trial was conducted at the Department of Osteoporosis of the University Hospital of Berne, Switzerland. Women with ≥1 follow-up DXA measurement who had received ≥1 dose of either ZOL (n=55) or PLB (n=55) were included. BMD was measured at LS, FN, TH, T-EPI, and T-DIA at baseline, 6, 12, 24, and 36 months. Morphometric vertebral fractures were assessed. Incident clinical fractures were recorded as adverse events. RESULTS Baseline characteristics were comparable with those in HORIZON and between groups. After 36 months, BMD was significantly higher in women treated with ZOL vs. PLB at LS, FN, TH, and T-EPI (+7.6%, +3.7%, +5.6%, and +5.5%, respectively, p<0.01 for all) but not T-DIA (+1.1%). The number of patients with ≥1 incident non-vertebral or morphometric fracture did not differ between groups (9 ZOL/11 PLB). Mean changes in BMD did not differ between groups with and without incident fracture, except that women with an incident non-vertebral fracture had significantly higher bone loss at predominantly cortical T-DIA (p=0.005). CONCLUSION ZOL was significantly superior to PLB at T-EPI but not at T-DIA. Women with an incident non-vertebral fracture experienced bone loss at T-DIA.