988 resultados para Copyright laws
Resumo:
Abstract Professional language assessment is a new concept that has great potential to benefit Internationally Educated Professionals and the communities they serve. This thesis reports on a qualitative study that examined the responses of 16 Canadian English Language Benchmark Assessment for Nurses (CELBAN) test-takers on the topic of their perceptions of the CELBAN test-taking experience in Ontario in the winter of 2015. An Ontario organization involved in registering participants distributed an e-mail through their listserv. Thematic analyses of focus group and interview transcripts identified 7 themes from the data. These themes were used to inform conclusions to the following questions: (1) How do IENs characterize their assessment experience? (2) How do IENs describe the testing constructs measured by the CELBAN? (3) What, if any, potential sources of construct irrelevant variance (CIV) do the test-takers describe based on their assessment experience? (4) Do IENs feel that the CELBAN tasks provide a good reflection of the types of communicative tasks required of a nurse? Overall, participants reported positive experiences with the CELBAN as an assessment of their language skills, and noted some instances in which they felt some factors external to the assessment impacted their demonstration of their knowledge and skill. Lastly, some test-takers noted the challenge of completing the CELBAN where the types of communicative nursing tasks included in the assessment differed from nursing tasks typical of an IENs country or origin. The findings are discussed in relation to literature on high-stakes large-scale assessment and IEPs, and a set of recommendations are offered to future CELBAN administration. These recommendations include (1) the provision of a webpage listing all licensure requirements (2) monitoring of CELBAN location and dates in relation to the wider certification timeline for applicants (3) The provision of additional CELBAN preparatory materials (4) Minor changes to the CELBAN administrative protocols. Given that the CELBAN is a relatively new assessment format and its widespread use for high-stakes decisions (a component of nursing certification and licensure), research validating IEN-test-taker responses to construct representation and construct irrelevant variance is critical to our understanding of the role of competency testing for IENs.
Resumo:
Climate change is expected to have marked impacts on forest ecosystems. In Ontario forests, this includes changes in tree growth, stand composition and disturbance regimes, with expected impacts on many forest-dependent communities, the bioeconomy, and other environmental considerations. In response to climate change, renewable energy systems, such as forest bioenergy, are emerging as critical tools for carbon emissions reductions and climate change mitigation. However, these systems may also need to adapt to changing forest conditions. Therefore, the aim of this research was to estimate changes in forest growth and forest cover in response to anticipated climatic changes in the year 2100 in Ontario forests, to ultimately explore the sustainability of bioenergy in the future. Using the Haliburton Forest and Wildlife Reserve in Ontario as a case study, this research used a spatial climate analog approach to match modeled Haliburton temperature and precipitation (via Fourth Canadian Regional Climate Model) to regions currently exhibiting similar climate (climate analogs). From there, current forest cover and growth rates of core species in Haliburton were compared to forests plots in analog regions from the US Forest Service Forest Inventory and Analysis (FIA). This comparison used two different emission scenarios, corresponding to a high and a mid-range emission future. This research then explored how these changes in forests may influence bioenergy feasibility in the future. It examined possible volume availability and composition of bioenergy feedstock under future conditions. This research points to a potential decline of softwoods in the Haliburton region with a simultaneous expansion of pre-established hardwoods such as northern red oak and red maple, as well as a potential loss in sugar maple cover. From a bioenergy perspective, hardwood residues may be the most feasible feedstock in the future with minimal change in biomass availability for energy production; under these possible conditions, small scale combined heat and power (CHP) and residential pellet use may be the most viable and ecologically sustainable options. Ultimately, understanding the way in which forests may change is important in informing meaningful policy and management, allowing for improved forest bioenergy systems, now and in the future.
Resumo:
This research is an examination into the ways online abuse functions in certain online spaces. By analyzing text-based online abuse against women who are content creators, this research maps how aspects of violence against women offline extends online. This research examines three different explorations into how online abuse against women functions. Chapter two considers what online abuse against women looks like on Twitter as a case study. This chapter contends that online abuse can be understood as an unintentional use of Twitter’s design. Chapter three focuses specifically on the textual descriptions of sexual violence women who are journalists receive online. Chapter four analyzes Gamergate, an online movement that specifically looks to organize online abuse towards women. Chapter five concludes by meditating on the need to look at a bigger picture that includes cultural shifts that dismantle the normalization of violence against women both on and offline.
Resumo:
Ring opening metathesis polymerization (ROMP) is a variant of olefin metathesis used to polymerize strained cyclic olefins. Ruthenium-based Grubbs’ catalysts are widely used in ROMP to produce industrially important products. While highly efficient in organic solvents such as dichloromethane and toluene, these hydrophobic catalysts are not typically applied in aqueous systems. With the advancements in emulsion and miniemulsion polymerization, it is promising to conduct ROMP in an aqueous dispersed phase to generate well-defined latex nanoparticles while improving heat transfer and reducing the use of volatile organic solvents (VOCs). Herein I report the efforts made using a PEGylated ruthenium alkylidene as the catalyst to initiate ROMP in an oil-in-water miniemulsion. 1H NMR revealed that the synthesized PEGylated catalyst was stable and reactive in water. Using 1,5-cyclooctadiene (COD) as monomer, we showed the highly efficient catalyst yielded colloidally stable polymer latexes with ~ 100% conversion at room temperature. Kinetic studies demonstrated first-order kinetics with good livingness as confirmed by the shift of gel permeation chromatography (GPC) traces. Depending on the surfactants used, the particle sizes ranged from 100 to 300 nm with monomodal distributions. The more strained cyclic olefin norbornene (NB) could also be efficiently polymerized with a PEGylated ruthenium alkylidene in miniemulsion to full conversion and with minimal coagulum formation.
Resumo:
The feasibility of monitoring fluid flow subsurface processes that result in density changes, using the iGrav superconducting gravimeter, is investigated. Practical targets include steam-assisted gravity drainage (SAGD) bitumen depletion and water pumping from aquifers, for which there is currently a void in low-impact, inexpensive monitoring techniques. This study demonstrates that the iGrav has the potential to be applied to multi-scale and diverse reservoirs. Gravity and gravity gradient signals are forward modeled for a real SAGD reservoir at two time steps, and for surface-fed and groundwater-fed aquifer pumping models, to estimate signal strength and directional dependency of water flow. Time-lapse gravimetry on small-scale reservoirs exhibits two obstacles, namely, a µgal sensitivity requirement and high noise levels in the vicinity of the reservoir. In this study, both limitations are overcome by proposing (i) a portable superconducting gravimeter, and (ii) a pair of instruments under various baseline geometries. This results in improved spatial resolution for locating depletion zones, as well as the cancellation of noise common in both instruments. Results indicate that a pair of iGrav superconducting gravimeters meet the sensitivity requirements and the spatial focusing desired to monitor SAGD bitumen migration at the reservoir scales. For SAGD reservoirs, the well pair separation, reservoir depth, and survey sampling determine the resolvability of individual well pair depletion patterns during the steam chamber rising phase, and general reservoir depletion patterns during the steam chamber spreading phase. Results show that monitoring water table elevation changes due to pumping and tracking whether groundwater or surface water is being extracted are feasible.
Resumo:
Smart cities, cities that are supported by an extensive digital infrastructure of sensors, databases and intelligent applications, have become a major area of academic, governmental and public interest. Simultaneously, there has been a growing interest in open data, the unrestricted use of organizational data for public viewing and use. Drawing on Science and Technology Studies (STS), Urban Studies and Political Economy, this thesis examines how digital processes, open data and the physical world can be combined in smart city development, through the qualitative interview-based case study of a Southern Ontario Municipality, Anytown. The thesis asks what are the challenges associated with smart city development and open data proliferation, is open data complimentary to smart urban development; and how is expertise constructed in these fields? The thesis concludes that smart city development in Anytown is a complex process, involving a variety of visions, programs and components. Although smart city and open data initiatives exist in Anytown, and some are even overlapping and complementary, smart city development is in its infancy. However, expert informants remained optimistic, faithful to a technologically sublime vision of what a smart city would bring. The thesis also questions the notion of expertise within the context of smart city and open data projects, concluding that assertions of expertise need to be treated with caution and scepticism when considering how knowledge is received, generated, interpreted and circulates, within organizations.
Resumo:
The section of CN railway between Vancouver and Kamloops runs along the base of many hazardous slopes, including the White Canyon, which is located just outside the town of Lytton, BC. The slope has a history of frequent rockfall activity, which presents a hazard to the railway below. Rockfall inventories can be used to understand the frequency-magnitude relationship of events on hazardous slopes, however it can be difficult to consistently and accurately identify rockfall source zones and volumes on large slopes with frequent activity, leaving many inventories incomplete. We have studied this slope as a part of the Canadian Railway Ground Hazard Research Program and have collected remote sensing data, including terrestrial laser scanning (TLS), photographs, and photogrammetry data since 2012, and used change detection to identify rockfalls on the slope. The objective of this thesis is to use a subset of this data to understand how rockfalls identified from TLS data could be used to understand the frequency-magnitude relationship of rockfalls on the slope. This includes incorporating both new and existing methods to develop a semi-automated workflow to extract rockfall events from the TLS data. We show that these methods can be used to identify events as small as 0.01 m3 and that the duration between scans can have an effect on the frequency-magnitude relationship of the rockfalls. We also show that by incorporating photogrammetry data into our analysis, we can create a 3D geological model of the slope and use this to classify rockfalls by lithology, to further understand the rockfall failure patterns. When relating the rockfall activity to triggering factors, we found that the amount of precipitation occurring over the winter has an effect on the overall rockfall frequency for the remainder of the year. These results can provide the railways with a more complete inventory of events compared to records created through track inspection, or rockfall monitoring systems that are installed on the slope. In addition, we can use the database to understand the spatial and temporal distribution of events. The results can also be used as an input to rockfall modelling programs.
Resumo:
The exhibition, The Map of the Empire (30 March – 6 May, 2016), featured photography, video, and installation works by Toronto-based artist, Brad Isaacs (Mohawk | mixed heritage). The majority of the artworks within the exhibition were produced from the Canadian Museum of Nature’s research and collections facility (Gatineau, Québec). The Canadian Museum of Nature (CMN), is the national natural history museum of (what is now called) Canada, with its galleries located in Ottawa, Ontario. The exhibition was the first to open at the Centre for Indigenous Research Creation at Queen’s University under the supervision of Dr. Dylan Robinson. Through the installment of The Map of the Empire, Isaacs effectively claimed space on campus grounds – within the geopolitical space of Katarokwi | Kingston – and pushed back against settler colonial imaginings of natural history. The Map of the Empire explored the capacity of Brad’s artistic practice in challenging the general belief under which natural history museums operate: that the experience of collecting/witnessing/interacting with a deceased and curated more-than-human animal will increase conservation awareness and facilitate human care towards nature. The exhibition also featured original poetry by Cecily Nicholson, author of Triage (2011) and From the Poplars (2014), as a response to Brad’s artwork. I locate the work of The Map of the Empire within the broader context of curatorship as a political practice engaging with conceptual and actualized forms of slow violence, both inside of and beyond the museum space. By unmapping the structures of slow, showcased and archived violence within the natural history museum, we can begin to radically transform and reimagine our connections with more-than-humans and encourage these relations to be reciprocal rather than hyper-curated or preserved.
Resumo:
Many dynamical processes are subject to abrupt changes in state. Often these perturbations can be periodic and of short duration relative to the evolving process. These types of phenomena are described well by what are referred to as impulsive differential equations, systems of differential equations coupled with discrete mappings in state space. In this thesis we employ impulsive differential equations to model disease transmission within an industrial livestock barn. In particular we focus on the poultry industry and a viral disease of poultry called Marek's disease. This system lends itself well to impulsive differential equations. Entire cohorts of poultry are introduced and removed from a barn concurrently. Additionally, Marek's disease is transmitted indirectly and the viral particles can survive outside the host for weeks. Therefore, depopulating, cleaning, and restocking of the barn are integral factors in modelling disease transmission and can be completely captured by the impulsive component of the model. Our model allows us to investigate how modern broiler farm practices can make disease elimination difficult or impossible to achieve. It also enables us to investigate factors that may contribute to virulence evolution. Our model suggests that by decrease the cohort duration or by decreasing the flock density, Marek's disease can be eliminated from a barn with no increase in cleaning effort. Unfortunately our model also suggests that these practices will lead to disease evolution towards greater virulence. Additionally, our model suggests that if intensive cleaning between cohorts does not rid the barn of disease, it may drive evolution and cause the disease to become more virulent.
Resumo:
This project is about Fast and Female, a community-based girls’ sport organization, that focuses on empowering girls through sport. In this thesis I produce a discourse analysis from interviews with six expert sportswomen and a textual analysis of the organization’s online content – including its social media pages. I ground my analysis in poststructural theory as explained by Chris Weedon (1997) and in literature that helps contextualize and better define empowerment (Collins, 2000; Cruikshank, 1999; Hains, 2012; Sharma, 2008; Simon, 1994) and neoliberalism (Silk & Andrews, 2012). My analysis in this project suggests that Fast and Female develops a community through online and in-person interaction. This community is focused on girls’ sport and empowerment, but, as the organization is situated in a neoliberal context, organizers must take extra consideration in order for the organization to develop a girls’ sport culture that is truly representative of the desires and needs of the participants rather than implicit neoliberal values. It is important to note that Fast and Female does not identify as a feminist organization. Through this thesis I argue that Fast and Female teaches girls that sport is empowering – but, while the organization draws on “empowerment,” a term often used by feminists, it promotes a notion of empowerment that teaches female athletes how to exist within current mainstream and sporting cultures, rather than encouraging them to be empowered female citizens who learn to question and challenge social inequity. I conclude my thesis with suggestions for Fast and Female to encourage empowerment in spite of the current neoliberal situation. I also offer a goal-setting workbook that I developed to encourage girls to set goals while thinking about their communities rather than just themselves.
Resumo:
In radiotherapy planning, computed tomography (CT) images are used to quantify the electron density of tissues and provide spatial anatomical information. Treatment planning systems use these data to calculate the expected spatial distribution of absorbed dose in a patient. CT imaging is complicated by the presence of metal implants which cause increased image noise, produce artifacts throughout the image and can exceed the available range of CT number values within the implant, perturbing electron density estimates in the image. Furthermore, current dose calculation algorithms do not accurately model radiation transport at metal-tissue interfaces. Combined, these issues adversely affect the accuracy of dose calculations in the vicinity of metal implants. As the number of patients with orthopedic and dental implants grows, so does the need to deliver safe and effective radiotherapy treatments in the presence of implants. The Medical Physics group at the Cancer Centre of Southeastern Ontario and Queen's University has developed a Cobalt-60 CT system that is relatively insensitive to metal artifacts due to the high energy, nearly monoenergetic Cobalt-60 photon beam. Kilovoltage CT (kVCT) images, including images corrected using a commercial metal artifact reduction tool, were compared to Cobalt-60 CT images throughout the treatment planning process, from initial imaging through to dose calculation. An effective metal artifact reduction algorithm was also implemented for the Cobalt-60 CT system. Electron density maps derived from the same kVCT and Cobalt-60 CT images indicated the impact of image artifacts on estimates of photon attenuation for treatment planning applications. Measurements showed that truncation of CT number data in kVCT images produced significant mischaracterization of the electron density of metals. Dose measurements downstream of metal inserts in a water phantom were compared to dose data calculated using CT images from kVCT and Cobalt-60 systems with and without artifact correction. The superior accuracy of electron density data derived from Cobalt-60 images compared to kVCT images produced calculated dose with far better agreement with measured results. These results indicated that dose calculation errors from metal image artifacts are primarily due to misrepresentation of electron density within metals rather than artifacts surrounding the implants.
Resumo:
Moving through a stable, three-dimensional world is a hallmark of our motor and perceptual experience. This stability is constantly being challenged by movements of the eyes and head, inducing retinal blur and retino-spatial misalignments for which the brain must compensate. To do so, the brain must account for eye and head kinematics to transform two-dimensional retinal input into the reference frame necessary for movement or perception. The four studies in this thesis used both computational and psychophysical approaches to investigate several aspects of this reference frame transformation. In the first study, we examined the neural mechanism underlying the visuomotor transformation for smooth pursuit using a feedforward neural network model. After training, the model performed the general, three-dimensional transformation using gain modulation. This gave mechanistic significance to gain modulation observed in cortical pursuit areas while also providing several testable hypotheses for future electrophysiological work. In the second study, we asked how anticipatory pursuit, which is driven by memorized signals, accounts for eye and head geometry using a novel head-roll updating paradigm. We showed that the velocity memory driving anticipatory smooth pursuit relies on retinal signals, but is updated for the current head orientation. In the third study, we asked how forcing retinal motion to undergo a reference frame transformation influences perceptual decision making. We found that simply rolling one's head impairs perceptual decision making in a way captured by stochastic reference frame transformations. In the final study, we asked how torsional shifts of the retinal projection occurring with almost every eye movement influence orientation perception across saccades. We found a pre-saccadic, predictive remapping consistent with maintaining a purely retinal (but spatially inaccurate) orientation perception throughout the movement. Together these studies suggest that, despite their spatial inaccuracy, retinal signals play a surprisingly large role in our seamless visual experience. This work therefore represents a significant advance in our understanding of how the brain performs one of its most fundamental functions.
Resumo:
Zr-Excel alloy (Zr-3.5Sn-0.8Nb-0.8Mo) is a dual phase (α + β) alloy in the as-received pressure tube condition. It has been proposed to be the pressure tube candidate material for the Generation-IV CANDU-Supercritical Water Reactor (CANDU-SCWR). In this dissertation, the effects of heavy ion irradiation, deformation and heat treatment on the microstructures of the alloy were investigated to enable us to have a better understanding of the potential in-reactor performance of this alloy. In-situ heavy ion (1 MeV) irradiation was performed to study the nucleation and evolution of dislocation loops in both α- and β-Zr. Small and dense type dislocation loops form under irradiation between 80 and 450 °C. The number density tends to saturate at ~ 0.1 dpa. Compared with the α-Zr, the defect yield is much lower in β-Zr. The stabilities of the metastable phases (β-Zr and ω-Zr) and the thermal-dynamically equilibrium phase, fcc Zr(Mo, Nb)2, under irradiation were also studied at different temperatures. Chemi-STEM elemental mapping was carried out to study the elemental redistribution caused by irradiation. The stability of these phases and the elemental redistribution are strongly dependent on irradiation temperature. In-situ time-of-flight neutron diffraction tensile and compressive tests were carried out at different temperatures to monitor lattice strain evolutions of individual grain families during these tests. The β-Zr is the strengthening phase in this alloy in the as-received plate material. Load is transferred to the β-Zr after yielding of the α-Zr grains. The temperature dependence of static strain aging and the yielding sequence of the individual grain families were discussed. Strong tensile/compressive asymmetry was observed in the {0002} grain family at room temperature. The microstructures of the sample deformed at 400 °C and the samples only subjected to heat treatment at the same temperature were characterized with TEM. Concentration of β phase stabilizers in the β grain and the morphology of β grain have significant effect on the stability of β- and ω-Zr under thermal treatment. Applied stress/strain enhances the decomposition of isothermal ω phase but suppresses α precipitation inside the β grains at high temperature. An α → ω/ZrO phase transformation was observed in the thin foils of Zr-Excel alloy and pure Zr during in-situ heating at 700 °C in TEM.
Resumo:
Most essay rating research in language assessment has examined human raters’ essay rating as a cognitive process, thus overlooking or oversimplifying the interaction between raters and sociocultural contexts. Given that raters are social beings, their practices have social meanings and consequences. Hence it is important to situate essay rating within its sociocultural context for a more meaningful understanding. Drawing on Engeström’s (1987, 2001) cultural-historical activity theory (CHAT) framework with a sociocultural perspective, this study reconceptualized essay rating as a socially mediated activity with both cognitive (individual raters’ goal-directed decision-making actions) and social layers (raters’ collective object-oriented essay rating activity at related settings). In particular, this study explored raters’ essay rating at one provincial rating centre in China within the context of a high-stakes university entrance examination, the National Matriculation English Test (NMET). This study adopted a multiple-method multiple-perspective qualitative case study design. Think-aloud protocols, stimulated recalls, interviews, and documents served as the data sources. This investigation involved 25 participants at two settings (rating centre and high schools), including rating centre directors, team leaders, NMET essay raters who were high school teachers, and school principals and teaching colleagues of these essay raters. Data were analyzed using Strauss and Corbin’s (1990) open and axial coding techniques, and CHAT for data integration. The findings revealed the interaction between raters and the NMET sociocultural context. Such interaction can be understood through a surface structure (cognitive layer) and a deep structure (social layer) concerning how raters assessed NMET essays, where the surface structure reflected the “what” and the deep structure explained the “how” and “why” in raters’ decision-making. This study highlighted the roles of goals and rules in rater decision-making, rating tensions and raters’ solutions, and the relationship between essay rating and teaching. This study highlights the value of a sociocultural view to essay rating research, demonstrates CHAT as a sociocultural approach to investigate essay rating, and proposes a direction for future washback research on the effect of essay rating. This study also provides support for NMET rating practices that can potentially bring positive washback to English teaching in Chinese high schools.
Resumo:
This thesis reports on 17O (I = 5/2) and 59Co (I = 7/2) quadrupole central transition (QCT) NMR studies of three classes of biologically important molecules: glucose, nicotinamide and Vitamin B12 derivatives. Extensive QCT NMR experiments were performed over a wide range of molecular motion by changing solvent viscosity and temperature. 17O-labels were introduced at the 5- and 6-positions respectively: D-[5-17O]-glucose and D-[6-17O]-glucose following the literature method. QCT NMR greatly increased the molecular size limit obtained by ordinary solution NMR. It requires much lower temperatures to get the optimal spectral resolution, which are preferable for biological molecules. In addition, quadrupolar product parameter (PQ) and shielding anisotropy product parameter (PSA) were obtained for hydroxide group and amide group for the first time. For conventional NMR studies of quadrupolar nuclei, only PQ is accessible while QCT NMR obtained both PQ and PSA simultaneously. Our experiments also suggest the resolution of QCT NMR can be even better than that obtained by conventional NMR. We observed for the first time that the second-order quadrupolar interaction becomes a dominant relaxation mechanism under ultraslow motion. All these observations suggest that QCT NMR can become a standard technique for studying quadrupolar nuclei in solution.