924 resultados para Control Network


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional real-time control systems are tightly integrated into the industrial processes they govern. Now, however, there is increasing interest in networked control systems. These provide greater flexibility and cost savings by allowing real-time controllers to interact with industrial processes over existing communications networks. New data packet queuing protocols are currently being developed to enable precise real-time control over a network with variable propagation delays. We show how one such protocol was formally modelled using timed automata, and how model checking was used to reveal subtle aspects of the control system's dynamic behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents results from the first use of neural networks for the real-time feedback control of high temperature plasmas in a Tokamak fusion experiment. The Tokamak is currently the principal experimental device for research into the magnetic confinement approach to controlled fusion. In the Tokamak, hydrogen plasmas, at temperatures of up to 100 Million K, are confined by strong magnetic fields. Accurate control of the position and shape of the plasma boundary requires real-time feedback control of the magnetic field structure on a time-scale of a few tens of microseconds. Software simulations have demonstrated that a neural network approach can give significantly better performance than the linear technique currently used on most Tokamak experiments. The practical application of the neural network approach requires high-speed hardware, for which a fully parallel implementation of the multi-layer perceptron, using a hybrid of digital and analogue technology, has been developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach to optimisation is introduced based on a precise probabilistic statement of what is ideally required of an optimisation method. It is convenient to express the formalism in terms of the control of a stationary environment. This leads to an objective function for the controller which unifies the objectives of exploration and exploitation, thereby providing a quantitative principle for managing this trade-off. This is demonstrated using a variant of the multi-armed bandit problem. This approach opens new possibilities for optimisation algorithms, particularly by using neural network or other adaptive methods for the adaptive controller. It also opens possibilities for deepening understanding of existing methods. The realisation of these possibilities requires research into practical approximations of the exact formalism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper surveys the context of feature extraction by neural network approaches, and compares and contrasts their behaviour as prospective data visualisation tools in a real world problem. We also introduce and discuss a hybrid approach which allows us to control the degree of discriminatory and topographic information in the extracted feature space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The establishment and maintenance of epithelial cell polarity is essential throughout the development and adult life of all multicellular organisms. A key player in maintaining epithelial polarity is Crumbs (Crb), an evolutionarily conserved type-I transmembrane protein initially identified in Drosophila. Correct Crb levels and apical localization are imperative for its function. However, as is the case for many polarized proteins, the mechanisms of its trafficking and strict apical localization are poorly understood. To address these questions, we developed a liposome-based assay to identify trafficking coats and interaction partners of Crb in a native-like environment. Thereby, we demonstrated that Crb is a cargo for Retromer, a trafficking complex required for transport from endosomes to the trans-Golgi-network. The functional importance of this interaction was revealed by studies in Drosophila epithelia, which established Retromer as a novel regulator of epithelial cell polarity and verified the vast potential of this technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider an inversion-based neurocontroller for solving control problems of uncertain nonlinear systems. Classical approaches do not use uncertainty information in the neural network models. In this paper we show how we can exploit knowledge of this uncertainty to our advantage by developing a novel robust inverse control method. Simulations on a nonlinear uncertain second order system illustrate the approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a novel inversion-based neuro-controller for solving control problems involving uncertain nonlinear systems that could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. In this work a novel robust inverse control approach is obtained based on importance sampling from these distributions. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The performance of the new algorithm is illustrated through simulations with example systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a general methodology for estimating and incorporating uncertainty in the controller and forward models for noisy nonlinear control problems. Conditional distribution modeling in a neural network context is used to estimate uncertainty around the prediction of neural network outputs. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localize the possible control solutions to consider. A nonlinear multivariable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non Gaussian distributions of control signal as well as processes with hysteresis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the direct adaptive inverse control of nonlinear multivariable systems with different delays between every input-output pair. In direct adaptive inverse control, the inverse mapping is learned from examples of input-output pairs. This makes the obtained controller sub optimal, since the network may have to learn the response of the plant over a larger operational range than necessary. Moreover, in certain applications, the control problem can be redundant, implying that the inverse problem is ill posed. In this paper we propose a new algorithm which allows estimating and exploiting uncertainty in nonlinear multivariable control systems. This approach allows us to model strongly non-Gaussian distribution of control signals as well as processes with hysteresis. The proposed algorithm circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last ten years our understanding of early spatial vision has improved enormously. The long-standing model of probability summation amongst multiple independent mechanisms with static output nonlinearities responsible for masking is obsolete. It has been replaced by a much more complex network of additive, suppressive, and facilitatory interactions and nonlinearities across eyes, area, spatial frequency, and orientation that extend well beyond the classical recep-tive field (CRF). A review of a substantial body of psychophysical work performed by ourselves (20 papers), and others, leads us to the following tentative account of the processing path for signal contrast. The first suppression stage is monocular, isotropic, non-adaptable, accelerates with RMS contrast, most potent for low spatial and high temporal frequencies, and extends slightly beyond the CRF. Second and third stages of suppression are difficult to disentangle but are possibly pre- and post-binocular summation, and involve components that are scale invariant, isotropic, anisotropic, chromatic, achromatic, adaptable, interocular, substantially larger than the CRF, and saturated by contrast. The monocular excitatory pathways begin with half-wave rectification, followed by a preliminary stage of half-binocular summation, a square-law transducer, full binocular summation, pooling over phase, cross-mechanism facilitatory interactions, additive noise, linear summation over area, and a slightly uncertain decision-maker. The purpose of each of these interactions is far from clear, but the system benefits from area and binocular summation of weak contrast signals as well as area and ocularity invariances above threshold (a herd of zebras doesn't change its contrast when it increases in number or when you close one eye). One of many remaining challenges is to determine the stage or stages of spatial tuning in the excitatory pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An in vitro mouse slice preparation from control and MPTP-treated mice in which functional reciprocal GP-STN connectivity is maintained, does not produce oscillatory bursting or synchronous activity neuronal activity. Pharmacological interventions that produce bursting activity do so without concomitant neuronal synchrony, or a requirement for glutamate or GABA transmission. Pre-treatment with MPTP did not alter this behaviour. Thus, we have no evidence that the functionally connected, but isolated, GP — STN network can act as a pacemaker for synchronous correlated activity in the basal ganglia and must conclude that other inputs such as those from cortex and/or striatum are required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The automatic interpolation of environmental monitoring network data such as air quality or radiation levels in real-time setting poses a number of practical and theoretical questions. Among the problems found are (i) dealing and communicating uncertainty of predictions, (ii) automatic (hyper)parameter estimation, (iii) monitoring network heterogeneity, (iv) dealing with outlying extremes, and (v) quality control. In this paper we discuss these issues, in light of the spatial interpolation comparison exercise held in 2004.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports the developnent of a mathenatical model and distributed, multi variable computer-control for a pilot plant double-effect climbing-film evaporator. A distributed-parameter model of the plant has been developed and the time-domain model transformed into the Laplace domain. The model has been further transformed into an integral domain conforming to an algebraic ring of polynomials, to eliminate the transcendental terms which arise in the Laplace domain due to the distributed nature of the plant model. This has made possible the application of linear control theories to a set of linear-partial differential equations. The models obtained have well tracked the experimental results of the plant. A distributed-computer network has been interfaced with the plant to implement digital controllers in a hierarchical structure. A modern rnultivariable Wiener-Hopf controller has been applled to the plant model. The application has revealed a limitation condition that the plant matrix should be positive-definite along the infinite frequency axis. A new multi variable control theory has emerged fram this study, which avoids the above limitation. The controller has the structure of the modern Wiener-Hopf controller, but with a unique feature enabling a designer to specify the closed-loop poles in advance and to shape the sensitivity matrix as required. In this way, the method treats directly the interaction problems found in the chemical processes with good tracking and regulation performances. Though the ability of the analytical design methods to determine once and for all whether a given set of specifications can be met is one of its chief advantages over the conventional trial-and-error design procedures. However, one disadvantage that offsets to some degree the enormous advantages is the relatively complicated algebra that must be employed in working out all but the simplest problem. Mathematical algorithms and computer software have been developed to treat some of the mathematical operations defined over the integral domain, such as matrix fraction description, spectral factorization, the Bezout identity, and the general manipulation of polynomial matrices. Hence, the design problems of Wiener-Hopf type of controllers and other similar algebraic design methods can be easily solved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flow control in Computer Communication systems is generally a multi-layered structure, consisting of several mechanisms operating independently at different levels. Evaluation of the performance of networks in which different flow control mechanisms act simultaneously is an important area of research, and is examined in depth in this thesis. This thesis presents the modelling of a finite resource computer communication network equipped with three levels of flow control, based on closed queueing network theory. The flow control mechanisms considered are: end-to-end control of virtual circuits, network access control of external messages at the entry nodes and the hop level control between nodes. The model is solved by a heuristic technique, based on an equivalent reduced network and the heuristic extensions to the mean value analysis algorithm. The method has significant computational advantages, and overcomes the limitations of the exact methods. It can be used to solve large network models with finite buffers and many virtual circuits. The model and its heuristic solution are validated by simulation. The interaction between the three levels of flow control are investigated. A queueing model is developed for the admission delay on virtual circuits with end-to-end control, in which messages arrive from independent Poisson sources. The selection of optimum window limit is considered. Several advanced network access schemes are postulated to improve the network performance as well as that of selected traffic streams, and numerical results are presented. A model for the dynamic control of input traffic is developed. Based on Markov decision theory, an optimal control policy is formulated. Numerical results are given and throughput-delay performance is shown to be better with dynamic control than with static control.