856 resultados para Continuous reactor
Mueller matrix microscope with a dual continuous rotating compensator setup and digital demodulation
Resumo:
In this paper we describe a new Mueller matrix (MM) microscope that generalizes and makes quantitative the polarized light microscopy technique. In this instrument all the elements of the MU are simultaneously determined from the analysis in the frequency domain of the time-dependent intensity of the light beam at every pixel of the camera. The variations in intensity are created by the two compensators continuously rotating at different angular frequencies. A typical measurement is completed in a little over one minute and it can be applied to any visible wavelength. Some examples are presented to demonstrate the capabilities of the instrument.
Resumo:
Työn teoriaosassa esitetään kirjallisuudessa esiintyviä teoreettisia ja kokeellisia yhtälöitä nesteen nopeuden, kaasun tilavuusosuuden, painehäviön ja lämmönsiirron laskemiseksi. Lisäksi käsitellään airlift-reaktoreiden toimintaa, rakennetta ja teollisia sovelluksia, sekä sekoitusta ja geometrian vaikutusta airlift-reaktoreiden hydrodynaamisiin ominaisuuksiin. Kokeellisessa osassa kuvataan käytetty koelaitteisto ja mittausmenetelmät sekä esitetään saadut koetulokset. Koelaitteisto on viidellä nousuputkella varustettu ulkoisen kierron airlift-reaktori. Kokeellisessa osassa pyritään ratkaisemaan tällaisessa reaktorissa mahdollisesti esiintyviä ongelmia, kuten "slug flown" muodostuminen nousuputkissa sekä fluidien epätasainen jakautuminen nousuputkiin. Lisäksi tutkitaan erilaisten muuttujien, kuten kaasun tilavuusvirran, nesteen viskositeetin, suutinkoon ja nesteen jakoputken rakenteen, vaikutusta kaasun tilavuusosuuteen ja nesteen nopeuteen nousuputkissa. Nesteen nopeudet mitataan merkkiainemenetelmällä ja kaasun tilavuusosuudet manometrimenetelmällä. Lämmönsiirtoa tutkitaan mittaamalla lämpötilaeroja nousuputkissa NiCr-Ni –termoelementeillä. Mittaustulosten perusteella muokataan korrelaatiot kaasun tilavuusosuudelle ja nesteen tyhjäputkinopeudelle. Korrelaatioista lasketut tulokset sopivat kohtuullisen hyvin yhteen mitattujen tulosten kanssa. "Slug flown" ei todettu muodostuvan ongelmaksi 2.5 mPa s pienemmillä viskositeetin arvoilla 2 metriä pitkissä ja 19 mm halkaisijaltaan olevissa putkissa. Lisäksi todettiin, että kaasu- ja nestefaasien jakautumisongelmat voidaan ratkaista rakenteellisesti.
Resumo:
RESUMO O morango é uma fruta de alto valor comercial e tem uma rápida deterioração, como a demanda por produtos saudáveis, seguros sob o ponto de vista microbiológico e livre de produtos químicos aumenta cada vez mais, o método de aplicação do gás ozônio em uma atmosfera controlada foi proposto. O objetivo deste trabalho foi verificar a eficiência do gás ozônio produzido por um reator, a fim de que os pequenos produtores de morangos possam usá-lo, contribuindo, assim, para as economias regionais. Morangos (Fragaria ananassa) variedade Oso Grande, colhidasna região de Minas Gerais foram divididas dois grupos: o primeiro recebeu tratamento com ozônio e o segundo não. No primeiro grupo, o ozônio foi aplicado durante 20 minutos a partir de um reator de Corona. Os frutos foram armazenados a 4 ° C, por períodos de 5, 10 e 15 dias. A qualidade dos frutos foi relata a partir dos níveis de sólidos solúveis totais (SS), acidez titulável (AT ), pH, compostos fenólicos (CF), ácido ascórbico (AA), perda de massa fresca (PM%) e análise microbiológica (AM), em diferentes tempos de armazenamento de frutos ozonizados e não ozonizados. O uso de gás ozônio foi eficiente para a pós-colheita de morango. Os níveis de microrganismos estão dentro dos limites aceitáveis e as propriedades físicas e químicas foram mantidas.
Resumo:
Introducción. Uno de los paradigmas más utilizados en el estudio de la atención es el Continuous Performance Test (CPT). La versión de pares idénticos (CPT-IP) se ha utilizado ampliamente para evaluar los déficits de atención en los trastornos del neurodesarrollo, neurológicos y psiquiátricos. Sin embargo, la localización de la activación cerebral de las redes atencionales varía significativamente según el diseño de resonancia magnética funcional (RMf) usado. Objetivo. Diseñar una tarea para evaluar la atención sostenida y la memoria de trabajo mediante RMf para proporcionar datos de investigación relacionados con la localización y el papel de estas funciones. Sujetos y métodos. El estudio contó con la participación de 40 estudiantes, todos ellos diestros (50%, mujeres; rango: 18-25 años). La tarea de CPT-IP se diseñó como una tarea de bloques, en la que se combinaban los períodos CPT-IP con los de reposo. Resultados. La tarea de CPT-IP utilizada activa una red formada por regiones frontales, parietales y occipitales, y éstas se relacionan con funciones ejecutivas y atencionales. Conclusiones. La tarea de CPT-IP utilizada en nuestro trabajo proporciona datos normativos en adultos sanos para el estudio del sustrato neural de la atención sostenida y la memoria de trabajo. Estos datos podrían ser útiles para evaluar trastornos que cursan con déficits en memoria de trabajo y en atención sostenida.
Resumo:
By appealing to renewal theory we determine the equations that the mean exit time of a continuous-time random walk with drift satisfies both when the present coincides with a jump instant or when it does not. Particular attention is paid to the corrections ensuing from the non-Markovian nature of the process. We show that when drift and jumps have the same sign the relevant integral equations can be solved in closed form. The case when holding times have the classical Erlang distribution is considered in detail.
Resumo:
Substances emitted into the atmosphere by human activities in urban and industrial areas cause environmental problems such as air quality degradation, respiratory diseases, climate change, global warming, and stratospheric ozone depletion. Volatile organic compounds (VOCs) are major air pollutants, emitted largely by industry, transportation and households. Many VOCs are toxic, and some are considered to be carcinogenic, mutagenic, or teratogenic. A wide spectrum of VOCs is readily oxidized photocatalytically. Photocatalytic oxidation (PCO) over titanium dioxide may present a potential alternative to air treatment strategies currently in use, such as adsorption and thermal treatment, due to its advantageous activity under ambient conditions, although higher but still mild temperatures may also be applied. The objective of the present research was to disclose routes of chemical reactions, estimate the kinetics and the sensitivity of gas-phase PCO to reaction conditions in respect of air pollutants containing heteroatoms in their molecules. Deactivation of the photocatalyst and restoration of its activity was also taken under consideration to assess the practical possibility of the application of PCO to the treatment of air polluted with VOCs. UV-irradiated titanium dioxide was selected as a photocatalyst for its chemical inertness, non-toxic character and low cost. In the present work Degussa P25 TiO2 photocatalyst was mostly used. In transient studies platinized TiO2 was also studied. The experimental research into PCO of following VOCs was undertaken: - methyl tert-butyl ether (MTBE) as the basic oxygenated motor fuel additive and, thus, a major non-biodegradable pollutant of groundwater; - tert-butyl alcohol (TBA) as the primary product of MTBE hydrolysis and PCO; - ethyl mercaptan (ethanethiol) as one of the reduced sulphur pungent air pollutants in the pulp-and-paper industry; - methylamine (MA) and dimethylamine (DMA) as the amino compounds often emitted by various industries. The PCO of VOCs was studied using a continuous-flow mode. The PCO of MTBE and TBA was also studied by transient mode, in which carbon dioxide, water, and acetone were identified as the main gas-phase products. The volatile products of thermal catalytic oxidation (TCO) of MTBE included 2-methyl-1-propene (2-MP), carbon monoxide, carbon dioxide and water; TBA decomposed to 2-MP and water. Continuous PCO of 4 TBA proceeded faster in humid air than dry air. MTBE oxidation, however, was less sensitive to humidity. The TiO2 catalyst was stable during continuous PCO of MTBE and TBA above 373 K, but gradually lost activity below 373 K; the catalyst could be regenerated by UV irradiation in the absence of gas-phase VOCs. Sulphur dioxide, carbon monoxide, carbon dioxide and water were identified as ultimate products of PCO of ethanethiol. Acetic acid was identified as a photocatalytic oxidation by-product. The limits of ethanethiol concentration and temperature, at which the reactor performance was stable for indefinite time, were established. The apparent reaction kinetics appeared to be independent of the reaction temperature within the studied limits, 373 to 453 K. The catalyst was completely and irreversibly deactivated with ethanethiol TCO. Volatile PCO products of MA included ammonia, nitrogen dioxide, nitrous oxide, carbon dioxide and water. Formamide was observed among DMA PCO products together with others similar to the ones of MA. TCO for both substances resulted in the formation of ammonia, hydrogen cyanide, carbon monoxide, carbon dioxide and water. No deactivation of the photocatalyst during the multiple long-run experiments was observed at the concentrations and temperatures used in the study. PCO of MA was also studied in the aqueous phase. Maximum efficiency was achieved in an alkaline media, where MA exhibited high fugitivity. Two mechanisms of aqueous PCO – decomposition to formate and ammonia, and oxidation of organic nitrogen directly to nitrite - lead ultimately to carbon dioxide, water, ammonia and nitrate: formate and nitrite were observed as intermediates. A part of the ammonia formed in the reaction was oxidized to nitrite and nitrate. This finding helped in better understanding of the gasphase PCO pathways. The PCO kinetic data for VOCs fitted well to the monomolecular Langmuir- Hinshelwood (L-H) model, whereas TCO kinetic behaviour matched the first order process for volatile amines and the L-H model for others. It should be noted that both LH and the first order equations were only the data fit, not the real description of the reaction kinetics. The dependence of the kinetic constants on temperature was established in the form of an Arrhenius equation.
Resumo:
In this paper we consider a stochastic process that may experience random reset events which suddenly bring the system to the starting value and analyze the relevant statistical magnitudes. We focus our attention on monotonic continuous-time random walks with a constant drift: The process increases between the reset events, either by the effect of the random jumps, or by the action of the deterministic drift. As a result of all these combined factors interesting properties emerge, like the existence (for any drift strength) of a stationary transition probability density function, or the faculty of the model to reproduce power-law-like behavior. General formulas for two extreme statistics, the survival probability, and the mean exit time, are also derived. To corroborate in an independent way the results of the paper, Monte Carlo methods were used. These numerical estimations are in full agreement with the analytical predictions.
Resumo:
This paper deals with the structural properties of a-Si:H/a-Si1-xCx: H multilayers deposited by glow-discharge decomposition of SiH4 and SiH4 and CH4 mixtures. The main feature of the rf plasma reactor is an automated substrate holder. The plasma stabilization time and its influence on the multilayer obtained is discussed. A series of a-Si:H/a-Si1-xCx: H multilayers has been deposited and characterized by secondary ion mass spectrometry (SIMS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). No asymmetry between the two types of interface has been observed. The results show that the multilayers present a very good periodicity and low roughness. The difficulty of determining the abruptness of the multilayer at the nanometer scale is discussed.
Resumo:
The small intestine is a dynamic and complex organ that is characterized by constant epithelium turnover and crosstalk among various cell types and the microbiota. Lymphatic capillaries of the small intestine, called lacteals, play key roles in dietary fat absorption and the gut immune response; however, little is known about the molecular regulation of lacteal function. Here, we performed a high-resolution analysis of the small intestinal stroma and determined that lacteals reside in a permanent regenerative, proliferative state that is distinct from embryonic lymphangiogenesis or quiescent lymphatic vessels observed in other tissues. We further demonstrated that this continuous regeneration process is mediated by Notch signaling and that the expression of the Notch ligand delta-like 4 (DLL4) in lacteals requires activation of VEGFR3 and VEGFR2. Moreover, genetic inactivation of Dll4 in lymphatic endothelial cells led to lacteal regression and impaired dietary fat uptake. We propose that such a slow lymphatic regeneration mode is necessary to match a unique need of intestinal lymphatic vessels for both continuous maintenance, due to the constant exposure to dietary fat and mechanical strain, and efficient uptake of fat and immune cells. Our work reveals how lymphatic vessel responses are shaped by tissue specialization and uncover a role for continuous DLL4 signaling in the function of adult lymphatic vasculature.
Resumo:
Chromogenic immunohistochemistry (IHC) is omnipresent in cancer diagnosis, but has also been criticized for its technical limit in quantifying the level of protein expression on tissue sections, thus potentially masking clinically relevant data. Shifting from qualitative to quantitative, immunofluorescence (IF) has recently gained attention, yet the question of how precisely IF can quantify antigen expression remains unanswered, regarding in particular its technical limitations and applicability to multiple markers. Here we introduce microfluidic precision IF, which accurately quantifies the target expression level in a continuous scale based on microfluidic IF staining of standard tissue sections and low-complexity automated image analysis. We show that the level of HER2 protein expression, as continuously quantified using microfluidic precision IF in 25 breast cancer cases, including several cases with equivocal IHC result, can predict the number of HER2 gene copies as assessed by fluorescence in situ hybridization (FISH). Finally, we demonstrate that the working principle of this technology is not restricted to HER2 but can be extended to other biomarkers. We anticipate that our method has the potential of providing automated, fast and high-quality quantitative in situ biomarker data using low-cost immunofluorescence assays, as increasingly required in the era of individually tailored cancer therapy.
Resumo:
PURPOSE: Obstructive sleep apnea syndrome (OSA) increases the risk of cardiovascular disease. We aimed at evaluating the effect of continuous positive airway pressure (CPAP) treatment on coronary endothelium-dependent vasoreactivity in OSA patients by quantifying myocardial blood flow (MBF) response to cold pressure testing (CPT). METHODS: In the morning after polysomnography (PSG), all participants underwent a dynamic (82)Rb cardiac positron emitting tomography/computed tomography (PET/CT) scan at rest, during CPT and adenosine stress. PSG and PET/CT were repeated at least 6 weeks after initiating CPAP treatment. OSA patients were compared to controls and according to response to CPAP. Patients' characteristics and PSG parameters were used to determine predictors of CPT-MBF. RESULTS: Thirty-two untreated OSA patients (age 58 ± 13 years, 27 men) and 9 controls (age 62 ± 5 years, 4 men) were enrolled. At baseline, compared to controls (apnea-hypopnea index (AHI) = 5.3 ± 2.6/h), untreated OSA patients (AHI = 48.6 ± 19.7/h) tend to have a lower CPT-MBF (1.1 ± 0.2 mL/min/g vs. 1.3 ± 0.4 mL/min/g, p = 0.09). After initiating CPAP, CPT-MBF was not different between well-treated patients (AHI <10/h) and controls (1.3 ± 0.3 mL/min/g vs. 1.3 ± 0.4 mL/min/g, p = 0.83), but it was lower for insufficiently treated patients (AHI ≥10/h) (0.9 ± 0.2 mL/min/g vs. 1.3 ± 0.4 mL/min/g, p = 0.0045). CPT-MBF was also higher in well-treated than in insufficiently treated patients (1.3 ± 0.3 mL/min/g vs. 0.9 ± 0.2 mL/min/g, p = 0.001). Mean nocturnal oxygen saturation (β = -0.55, p = 0.02) and BMI (β = -0.58, p = 0.02) were independent predictors of CPT-MBF in OSA patients. CONCLUSIONS: Coronary endothelial vasoreactivity is impaired in insufficiently treated OSA patients compared to well-treated patients and controls, confirming the need for CPAP optimization.
Resumo:
The literature part of the work reviews overall Fischer-Tropsch process, Fischer-Tropsch reactors and catalysts. Fundamentals of Fischer-Tropsch modeling are also presented. The emphasis is on the reactor unit. Comparison of the reactors and the catalysts is carried out to choose the suitable reactor setup for the modeling work. The effects of the operation conditions are also investigated. Slurry bubble column reactor model operating with cobalt catalyst is developed by taking into account the mass transfer of the reacting components (CO and H2) and the consumption of the reactants in the liquid phase. The effect of hydrostatic pressure and the change in total mole flow rate in gas phase are taken into account in calculation of the solubilities. The hydrodynamics, reaction kinetics and product composition are determined according to literature. The cooling system and furthermore the required heat transfer area and number of cooling tubes are also determined. The model is implemented in Matlab software. Commercial scale reactor setup is modeled and the behavior of the model is investigated. The possible inaccuraries are evaluated and the suggestions for the future work are presented. The model is also integrated to Aspen Plus process simulation software, which enables the usage of the model in more extensive Fischer-Tropsch process simulations. Commercial scale reactor of diameter of 7 m and height of 30 m was modeled. The capacity of the reactor was calculated to be about 9 800 barrels/day with CO conversion of 75 %. The behavior of the model was realistic and results were in the right range. The highest uncertainty to model was estimated to be caused by the determination of the kinetic rate.
Resumo:
This thesis gathers knowledge about ongoing high-temperature reactor projects around the world. Methods for calculating coolant flow and heat transfer inside a pebble-bed reactor core are also developed. The thesis begins with the introduction of high-temperature reactors including the current state of the technology. Process heat applications that could use the heat from a high-temperature reactor are also introduced. A suitable reactor design with data available in literature is selected for the calculation part of the thesis. Commercial computational fluid dynamics software Fluent is used for the calculations. The pebble-bed is approximated as a packed-bed, which causes sink terms to the momentum equations of the gas flowing through it. A position dependent value is used for the packing fraction. Two different models are used to calculate heat transfer. First a local thermal equilibrium is assumed between the gas and solid phases and a single energy equation is used. In the second approach, separate energy equations are used for the phases. Information about steady state flow behavior, pressure loss, and temperature distribution in the core is obtained as results of the calculations. The effect of inlet mass flow rate to pressure loss is also investigated. Data found in literature and the results correspond each other quite well, considered the amount of simplifications in the calculations. The models developed in this thesis can be used to solve coolant flow and heat transfer in a pebble-bed reactor, although additional development and model validation is needed for better accuracy and reliability.