866 resultados para Conservation of Resources
Resumo:
Conservation of genetic resources is a recognised necessity for the long term maintenance of evolutionary potential. Effective assessment and implementation Strategies are required to permit rapid evaluation and protection of resources. Here we use information from the chloroplast, total genome and quantitative characters assayed across wide-ranging populations to assess genetic resources in a Neotropical tree, Cedrela odorata. A major differentiation identified for organelle, total genomic and quantitative variation was found to coincide with an environmental gradient across Costa Rica. However, a major evolutionary divergence between the Yucatan region and Honduras/Nicaragua identified within the chloroplast genome was not differentiated using quantitative characters. Based on these and other results, a three-tiered conservation genetic prioritisation process is recommended. In order of importance, and where information is available, conservation units should be defined using quantitative (expressed genes), nuclear (genetic connectivity) and organellar (evolutionary) measures. Where possible, information from range wide and local scale studies should be combined and emphasis should be placed on coincidental disjunctions for two or more measures. However, if only rapid assessments of diversity are possible, then assessment of organelle variation provides the most cautious assessment of genetic resources, at least for C. odorata, and can be used to propose initial conservation units. When considering effective implementation of genetic resource management strategies a final tier should be considered, that of landuse/geopolitical divisions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Urban encroachment on dense, coastal koala populations has ensured that their management has received increasing government and public attention. The recently developed National Koala Conservation Strategy calls for maintenance of viable populations in the wild. Yet the success of this, and other, conservation initiatives is hampered by lack of reliable and generally accepted national and regional population estimates. In this paper we address this problem in a potentially large, but poorly studied, regional population in the State that is likely to have the largest wild populations. We draw on findings from previous reports in this series and apply the faecal standing-crop method (FSCM) to derive a regional estimate of more than 59 000 individuals. Validation trials in riverine communities showed that estimates of animal density obtained from the FSCM and direct observation were in close agreement. Bootstrapping and Monte Carlo simulations were used to obtain variance estimates for our population estimates in different vegetation associations across the region. The most favoured habitat was riverine vegetation, which covered only 0.9% of the region but supported 45% of the koalas. We also estimated that between 1969 and 1995 similar to 30% of the native vegetation associations that are considered as potential koala habitat were cleared, leading to a decline of perhaps 10% in koala numbers. Management of this large regional population has significant implications for the national conservation of the species: the continued viability of this population is critically dependent on the retention and management of riverine and residual vegetation communities, and future vegetation-management guidelines should be cognisant of the potential impacts of clearing even small areas of critical habitat. We also highlight eight management implications.
Resumo:
The loss of habitat and biodiversity worldwide has led to considerable resources being spent on conservation interventions. Prioritising these actions is challenging due to the complexity of the problem and because there can be multiple actors undertaking conservation actions, often with divergent or partially overlapping objectives. We explore this issue with a simulation study involving two agents sequentially purchasing land for the conservation of multiple species using three scenarios comprising either divergent or partially overlapping objectives between the agents. The first scenario investigates the situation where both agents are targeting different sets of threatened species. The second and third scenarios represent a case where a government agency attempts to implement a complementary conservation network representing 200 species, while a non-government organisation is focused on achieving additional protection for the ten rarest species. Simulated input data was generated using distributions taken from real data to model the cost of parcels, and the rarity and co-occurrence of species. We investigated three types of collaborative interactions between agents: acting in isolation, sharing information and pooling resources with the third option resulting in the agents combining their resources and effectively acting as a single entity. In each scenario we determine the cost savings when an agent moves from acting in isolation to either sharing information or pooling resources with the other agent. The model demonstrates how the value of collaboration can vary significantly in different situations. In most cases, collaborating would have associated costs and these costs need to be weighed against the potential benefits from collaboration. Our model demonstrates a method for determining the range of costs that would result in collaboration providing an efficient use of scarce conservation resources.
Resumo:
The major dangers facing the resources of the Great Lakes of Africa include over exploitation, falling species diversity, accumulating pollution, and a probable decline in fishery productivity. These dangers may be viewed as accentuated by: i) Inadequate scientific knowledge on the exploited resources ii) Reluctance to apply even the limited scientific information available, by fishery administrators iii) Constant increase in the demand for fish and other aquatic resources. iv) Lack of commitment to active collaboration and co-operation by riparian states regarding development and management of the shared resources. This paper discusses the above factors in relation to the dangerous trends facing the resources of the Great Lakes of Africa. The discussion is intended to contribute to the promotion of rational and sustainable utilisation of the aquatic resources of these lakes.
Resumo:
This research develops four case studies on small-scale fisheries in Central America located within indigenous territories. The ngöbe Bugle Conte Burica Territory in the south of Costa Rica, the Garífuna territory in nueva Armenia Honduras, the Rama territory in Nicaragua and the ngöbe Bugle territory in Bocas del Toro, Panamá. This is one of the first studies focusing on indigenous territories, artisanal fisheries and SSF guidelines. The cases are a first approach to discussing and analyzing relevant social and human rights issues related to conservation of marine resources and fisheries management in these territories. The cases discussed between other issues of interest, the relationships between marine protected areas under different governance models and issues related to the strengthening of the small-scale fisheries of these indigenous populations and marine fishing territories. They highlight sustainability, governance, land tenure and access to fishing resources, gender, traditional knowledge importance and new challenges as climate change.
Resumo:
Conservation Agriculture (CA) is mostly referred to in the literature as having three principles at the core of its identity: minimum soil disturbance, permanent organic soil cover and crop diversity. This farming package has been described as suitable to improve yields and livelihoods of smallholders in semi-arid regions of Kenya, which since the colonial period have been heavily subjected to tillage. Our study is based on a qualitative approach that followed local meanings and understandings of soil fertility, rainfall and CA in Ethi and Umande located in the semi-arid region of Laikipia, Kenya. Farm visits, 53 semistructured interviews, informal talks were carried out from April to June 2015. Ethi and Umande locations were part of a resettlement programme after the independence of Kenya that joined together people coming from different farming contexts. Since the 1970–80s, state and NGOs have been promoting several approaches to control erosion and boost soil fertility. In this context, CA has also been promoted preferentially since 2007. Interviewees were well acquainted with soil erosion and the methods to control it. Today, rainfall amount and distribution are identified as major constraints to crop performance. Soil fertility is understood as being under control since farmers use several methods to boost it (inorganic fertilisers, manure, terraces, agroforestry, vegetation barriers). CA is recognised to deliver better yields but it is not able to perform well under severe drought and does not provide yields as high as ‘promised’ in promotion campaigns. Moreover, CA is mainly understood as “cultivating with chemicals”, “kulima na dawa”, in kiswahili. A dominant view is that CA is about minimum tillage and use of pre-emergence herbicides. It is relevant to reflect about what kind of CA is being promoted and if elements like soil cover and crop rotation are given due attention. CA based on these two ideas, minimum tillage and use of herbicides, is hard to stand as a programme to be promoted and up-scaled. Therefore CA appears not to be recognised as a convincing approach to improve the livelihoods in Laikipia.
Resumo:
This paper examines empirically the relative influence of the degree of endangerment of wildlife species and their stated likeability on individuals' allocation of funds for their conservation. To do this, it utilises data obtained from the IUCN Red List, and likeability and fund allocation data obtained from two serial surveys of a sample of the Australian public who were requested to assess 24 Australian wildlife species from three animal classes: mammals, birds and reptiles. Between the first and second survey, respondents were provided with extra information about the focal species. This information resulted in the dominance of endangerment as the major influence on the allocation of funding of respondents for the conservation of the focal wildlife species. Our results throw doubts on the proposition in the literature that the likeability of species is the dominant influence on willingness to pay for conservation of wildlife species. Furthermore, because the public's allocation of fund for conserving wildlife species seems to be more sensitive to information about the conservation status of species than to factors influencing their likeability, greater attention to providing accurate information about the former than the latter seems justified. Keywords: Conservation of wildlife species; Contingent valuation; Endangerment of species; Likeability of species; Willingness to pay
Resumo:
Patterns of connectivity among local populations influence the dynamics of regional systems, but most ecological models have concentrated on explaining the effect of connectivity on local population structure using dynamic processes covering short spatial and temporal scales. In this study, a model was developed in an extended spatial system to examine the hypothesis that long term connectivity levels among local populations are influenced by the spatial distribution of resources and other habitat factors. The habitat heterogeneity model was applied to local wild rabbit populations in the semi-arid Mitchell region of southern central Queensland (the Eastern system). Species' specific population parameters which were appropriate for the rabbit in this region were used. The model predicted a wide range of long term connectivity levels among sites, ranging from the extreme isolation of some sites to relatively high interaction probabilities for others. The validity of model assumptions was assessed by regressing model output against independent population genetic data, and explained over 80% of the variation in the highly structured genetic data set. Furthermore, the model was robust, explaining a significant proportion of the variation in the genetic data over a wide range of parameters. The performance of the habitat heterogeneity model was further assessed by simulating the widely reported recent range expansion of the wild rabbit into the Mitchell region from the adjacent, panmictic Western rabbit population system. The model explained well the independently determined genetic characteristics of the Eastern system at different hierarchic levels, from site specific differences (for example, fixation of a single allele in the population at one site), to differences between population systems (absence of an allele in the Eastern system which is present in all Western system sites). The model therefore explained the past and long term processes which have led to the formation and maintenance of the highly structured Eastern rabbit population system. Most animals exhibit sex biased dispersal which may influence long term connectivity levels among local populations, and thus the dynamics of regional systems. When appropriate sex specific dispersal characteristics were used, the habitat heterogeneity model predicted substantially different interaction patterns between female-only and combined male and female dispersal scenarios. In the latter case, model output was validated using data from a bi-parentally inherited genetic marker. Again, the model explained over 80% of the variation in the genetic data. The fact that such a large proportion of variability is explained in two genetic data sets provides very good evidence that habitat heterogeneity influences long term connectivity levels among local rabbit populations in the Mitchell region for both males and females. The habitat heterogeneity model thus provides a powerful approach for understanding the large scale processes that shape regional population systems in general. Therefore the model has the potential to be useful as a tool to aid in the management of those systems, whether it be for pest management or conservation purposes.
Resumo:
Report for City Design, for Environment and Parks, within the Brisbane City Council. Context of this Project A Conservation Study for the Old Brisbane Botanic Gardens, formerly called the Brisbane City Botanic Gardens, was finalised in 1995 and prepared by Jeannie Sim for the Landscape Section of Brisbane City Council, the same author of the present report. This unpublished report was the first conservation plan prepared for the place and it was recommended that it be reviewed in five years time. That time has arrived finally with the preparation of the 2005 Review. The present project was commissioned by City Design on behalf of Environment and Parks Section of Brisbane City Council. The author has purposely chosen to call the study site the 'Old Brisbane Botanic Gardens' (OBBG) to differentiate it from the Brisbane Botanic Gardens, Mt. Coot-tha (BBG-MC), and to maintain the claim for this original garden to remain as a botanic garden for Brisbane. This name immediately brings to mind an association with history, as in the precedent set by the naming of the nearby 'Old Government House' at Gardens Point.
Resumo:
Sustainability decisions and their impacts may be among the greatest challenges facing the world in the 21st century (Davos 2000). Apart from adaptation on the part of established organizations these challenges are arguably going to require solutions developed by new actors However, young ventures have only recently begun generating research interest within sustainability literature (Shepherd et al. 2009). In particular, little is known about resource behaviours of these ventures and how they adapt to substantial resource constraints. One promising theory that has been identified as a way that some entrepreneurs manage constraints is bricolage: a construct defined as “making do by applying combinations of the resources at hand to new problems and opportunities” (Baker and Nelson 2005: 333). Bricolage may be critical as the means of continued venture success as these ventures are frequently developed in severe resource constraint, owing to higher levels of technical sophistication (Rothaermel and Deeds 2006). Further, they are often developed by entrepreneurs committed to personal and social goals of resourcefulness, including values that focus on conservation rather than consumption of resources (Shepherd et al. 2009). In this paper, using seven novel cases of high potential sustainability firms from CAUSEE we consider how constraints impact resource behaviours and further illustrate and extend bricolage domains previously developed by Baker and Nelson (2005) with recommendations for theory and practice provided.
Resumo:
Snakehead fishes in the family Channidae are obligate freshwater fishes represented by two extant genera, the African Parachannna and the Asian Channa. These species prefer still or slow flowing water bodies, where they are top predators that exercise high levels of parental care, have the ability to breathe air, can tolerate poor water quality, and interestingly, can aestivate or traverse terrestrial habitat in response to seasonal changes in freshwater habitat availability. These attributes suggest that snakehead fishes may possess high dispersal potential, irrespective of the terrestrial barriers that would otherwise constrain the distribution of most freshwater fishes. A number of biogeographical hypotheses have been developed to account for the modern distributions of snakehead fishes across two continents, including ancient vicariance during Gondwanan break-up, or recent colonisation tracking the formation of suitable climatic conditions. Taxonomic uncertainty also surrounds some members of the Channa genus, as geographical distributions for some taxa across southern and Southeast (SE) Asia are very large, and in one case is highly disjunct. The current study adopted a molecular genetics approach to gain an understanding of the evolution of this group of fishes, and in particular how the phylogeography of two Asian species may have been influenced by contemporary versus historical levels of dispersal and vicariance. First, a molecular phylogeny was constructed based on multiple DNA loci and calibrated with fossil evidence to provide a dated chronology of divergence events among extant species, and also within species with widespread geographical distributions. The data provide strong evidence that trans-continental distribution of the Channidae arose as a result of dispersal out of Asia and into Africa in the mid–Eocene. Among Asian Channa, deep divergence among lineages indicates that the Oligocene-Miocene boundary was a time of significant species radiation, potentially associated with historical changes in climate and drainage geomorphology. Mid-Miocene divergence among lineages suggests that a taxonomic revision is warranted for two taxa. Deep intra-specific divergence (~8Mya) was also detected between C. striata lineages that occur sympatrically in the Mekong River Basin. The study then examined the phylogeography and population structure of two major taxa, Channa striata (the chevron snakehead) and the C. micropeltes (the giant snakehead), across SE Asia. Species specific microsatellite loci were developed and used in addition to a mitochondrial DNA marker (Cyt b) to screen neutral genetic variation within and among wild populations. C. striata individuals were sampled across SE Asia (n=988), with the major focus being the Mekong Basin, which is the largest drainage basin in the region. The distributions of two divergent lineages were identified and admixture analysis showed that where they co-occur they are interbreeding, indicating that after long periods of evolution in isolation, divergence has not resulted in reproductive isolation. One lineage is predominantly confined to upland areas of northern Lao PDR to the north of the Khorat Plateau, while the other, which is more closely related to individuals from southern India, has a widespread distribution across mainland SE Asian and Sumatra. The phylogeographical pattern recovered is associated with past river networks, and high diversity and divergence among all populations sampled reveal that contemporary dispersal is very low for this taxon, even where populations occur in contiguous freshwater habitats. C. micropeltes (n=280) were also sampled from across the Mekong River Basin, focusing on the lower basin where it constitutes an important wild fishery resource. In comparison with C. striata, allelic diversity and genetic divergence among populations were extremely low, suggesting very recent colonisation of the greater Mekong region. Populations were significantly structured into at least three discrete populations in the lower Mekong. Results of this study have implications for establishing effective conservation plans for managing both species, that represent economically important wild fishery resources for the region. For C. micropeltes, it is likely that a single fisheries stock in the Tonle Sap Great Lake is being exploited by multiple fisheries operations, and future management initiatives for this species in this region will need to account for this. For C. striata, conservation of natural levels of genetic variation will require management initiatives designed to promote population persistence at very localised spatial scales, as the high level of population structuring uncovered for this species indicates that significant unique diversity is present at this fine spatial scale.
Resumo:
Tributyl tin (TBT) deposits in the sediments are one of many impacts that have been imposed on both the environment and the up-coming development of Boat Haven, Airlie Beach, Queensland. The current costly solution to this problem (that is, removal and re-burial) could be put in future to the credit of the developer rather than be treated (as at present) as a penalty. The Queensland Government’s Offsets Scheme provides an opportunity to promote effective conservation of regional landscapes. Because this scheme plans for offsetting in terrestrial vegetation systems through rehabilitation, so credits could be given to those approved developers who rehabilitate valuable marine habitats disturbed by TBT deposits.
Resumo:
A recent advance in biosecurity surveillance design aims to benefit island conservation through early and improved detection of incursions by non-indigenous species. The novel aspects of the design are that it achieves a specified power of detection in a cost-managed system, while acknowledging heterogeneity of risk in the study area and stratifying the area to target surveillance deployment. The design also utilises a variety of surveillance system components, such as formal scientific surveys, trapping methods, and incidental sightings by non-biologist observers. These advances in design were applied to black rats (Rattus rattus) representing the group of invasive rats including R. norvegicus, and R. exulans, which are potential threats to Barrow Island, Australia, a high value conservation nature reserve where a proposed liquefied natural gas development is a potential source of incursions. Rats are important to consider as they are prevalent invaders worldwide, difficult to detect early when present in low numbers, and able to spread and establish relatively quickly after arrival. The ‘exemplar’ design for the black rat is then applied in a manner that enables the detection of a range of non-indigenous species of rat that could potentially be introduced. Many of the design decisions were based on expert opinion as data gaps exist in empirical data. The surveillance system was able to take into account factors such as collateral effects on native species, the availability of limited resources on an offshore island, financial costs, demands on expertise and other logistical constraints. We demonstrate the flexibility and robustness of the surveillance system and discuss how it could be updated as empirical data are collected to supplement expert opinion and provide a basis for adaptive management. Overall, the surveillance system promotes an efficient use of resources while providing defined power to detect early rat incursions, translating to reduced environmental, resourcing and financial costs.
Resumo:
Habitat fragmentation as a result of urbanisation is a growing problem for native lizard species. The Eastern Water Dragon (Physignathus lesueurii) is a social arboreal agamid lizard, native to Australia. This species represents an ideal model species to investigate the effect of urbanisation because of their prominent abundance in the urban landscape. Here we describe the isolation and characterisation of a novel set of 74 di-, tri-, and tetramicrosatellites from which 18 were selected and optimised into two multiplexes. The 18 microsatellites generated a total 148 alleles across the two populations. The number of alleles per locus varied from 2 to 18 alleles and measures of Ho and He varied from 0.395 to 0.877 and from 0.441 to 0.880, respectively. We also present primers for four novel mitochondrial DNA (mtDNA) markers. The combined length of the four mtDNA marker pairs was 2,528 bp which included 15 nucleotides changes. In comparison to threatened species, which are generally characterised by small population sizes, the Eastern Water Dragon represents an ideal model species to investigate the effect of urbanisation on their behavioural ecology and connectivity patterns among populations.