883 resultados para Conjugate Vaccine
Resumo:
The efficacy of BCG vaccine (attenuated Mycobacterium bovis) against pulmonary tuberculosis varies enormously among different populations. The prevailing hypothesis attributes this variation to interactions between the vaccine and mycobacteria common in the environment. Studies have revealed that most protective antigens expressed by the antituberculous vaccine are conserved in M. avium, supporting the hypothesis that exposure to environmental mycobacteria generates a cross-reactive immune response that interferes with BCG efficacy. In this study we investigated the effect of a prior exposure to heat-killed M. avium on the immune response and the protective efficacy induced by a genetic vaccine pVAXhsp65 (hsp65 gene from M. leprae inserted in pVAX vector) against experimental tuberculosis. To evaluate the effect on the immune response, female BALB/c mice were initially injected with distinct doses (0.08×106, 4×106, and 200×10 6) of heat-killed M. avium by subcutaneous route. Three weeks later, the animals were immunized with 3 doses of DNAhsp65 by intramuscular route (100μg/15 days apart). Control groups received only M. avium, vaccine (pVAXhsp65), vector (pVAX) or saline solution. Cytokine production and antibody levels were determined by ELISA. To evaluate the effect on the protective efficacy, animals were initially sensitized with 200×106 heat-killed CFU of M. avium by subcutaneous route and then immunized with 3 doses of pVAXhsp65 (100μg/15 days apart) by intramuscular route. Control groups were injected with saline, pVAX (4 doses), pVAXhsp65 (4 doses), M. avium or M. avium plus pVAX (3 doses). Fifteen days after last DNA dose, the animals were infected with 1×104 viable CFU of H37Rv M. tuberculosis by intratracheal route. Thirty days after challenge, the animals were sacrificed and the bacterial burden was determined by counting the number of CFU in the lungs. Lung histological sections were also analyzed. Splenic cells from primed animals produced more IL-5 but less IFN-gamma than non-primed ones. Also, prior contact with M. avium determined higher production of IgG1 and IgG2a anti-hsp65 antibodies in comparison to control groups. However, this higher immune response did not decrease the bacterial burden in the lungs. In addition, prior sensitization with M. avium decreased the parenchyma preservation observed in the group immunized only with pVaxhsp65. These results indicate that environmental mycobacteria can interfere with immunity and protective efficacy induced by DNAhsp65.
Resumo:
Background: Vaccination of neonates is generally difficult due to the immaturity of the immune system and consequent higher susceptibility to tolerance induction. Genetic immunization has been described as an alternative to trigger a stronger immune response in neonates, including significant Th1 polarization. In this investigation we analysed the potential use of a genetic vaccine containing the heat shock protein (hsp65) from Mycobacterium leprae (pVAXhsp65) against tuberculosis (TB) in neonate mice. Aspects as antigen production, genomic integration and immunogenicity were evaluated. Methods: Hsp65 message and genomic integration were evaluated by RT-PCR and Southern blot, respectively. Immunogenicity of pVAXhsp65 alone or combined with BCG was analysed by specific induction of antibodies and cytokines, both quantified by ELISA. Results: This DNA vaccine was transcribed by muscular cells of neonate mice without integration into the cellular genome. Even though this vaccine was not strongly immunogenic when entirely administered (three doses) during early animal's life, it was not tolerogenic. In addition, pVAXhsp65 and BCG were equally able to prime newborn mice for a strong and mixed immune response (Th1 + Th2) to pVAXhsp65 boosters administered later, at the adult life. Conclusion: These results suggest that pVAXhsp65 can be safely used as a priming stimulus in neonate animals in prime-boost similar strategies to control TB. However, priming with BCG or pVAXhsp65, directed the ensuing immune response triggered by an heterologous or homologous booster, to a mixed Th1/Th2 pattern of response. Measures as introduction of IL-12 or GM-CSF genes in the vaccine construct or even IL-4 neutralization, are probably required to increase the priming towards Th1 polarization to ensure control of tuberculosis infection. © 2007 Pelizon et al; licensee BioMed Central Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: Protein-calorie malnutrition (PCM) is the most common type of malnutrition. PCM leads to immunodeficiency and consequent increased susceptibility to infectious agents. In addition, responses to prophylactic vaccines depend on nutritional status. This study aims to evaluate the ability of undernourished mice to mount an immune response to a genetic vaccine (pVAXhsp65) against tuberculosis, containing the gene coding for the heat shock protein 65 from mycobacteria. Methods: Young adult female BALB/c mice were fed ad libitum or with 80% of the amount of food consumed by a normal diet group. We initially characterized a mice model of dietary restriction by determining body and spleen weights, hematological parameters and histopathological changes in lymphoid organs. The ability of splenic cells to produce IFN-gamma and IL-4 upon in vitro stimulation with LPS or S. aureus and the serum titer of specific IgG1 and IgG2a anti-hsp65 antibodies after intramuscular immunization with pVAXhsp65 was then tested. Results: Dietary restriction significantly decreased body and spleen weights and also the total lymphocyte count in blood. This restriction also determined a striking atrophy in lymphoid organs as spleen, thymus and lymphoid tissue associated with the small intestine. Specific antibodies were not detected in mice submitted to dietary restriction whereas the well nourished animals produced significant levels of both, IgG1 and IgG2a anti-hsp65. Conclusion: 20% restriction in food intake deeply compromised humoral immunity induced by a genetic vaccine, alerting, therefore, for the relevance of the nutritional condition in vaccination programs based on these kinds of constructs. © 2009 Ishikawa et al; licensee BioMed Central Ltd.
Resumo:
Background: Our group previously demonstrated that a DNA plasmid encoding the mycobacterial 65-kDa heat shock protein (DNA-HSP65) displayed prophylactic and therapeutic effect in a mice model for tuberculosis. This protection was attributed to induction of a strong cellular immunity against HSP65. As specific immunity to HSP60 family has been detected in arthritis, multiple sclerosis and diabetes, the vaccination procedure with DNA-HSP65 could induce a cross-reactive immune response that could trigger or worsen these autoimmune diseases. Methods: In this investigation was evaluated the effect of a previous vaccination with DNA-HSP65 on diabetes development induced by Streptozotocin (STZ). C57BL/6 mice received three vaccine doses or the corresponding empty vector and were then injected with multiple low doses of STZ. Results: DNA-HSP65 vaccination protected mice from STZ induced insulitis and this was associated with higher production of IL-10 in spleen and also in the islets. This protective effect was also concomitant with the appearance of a regulatory cell population in the spleen and a decreased infiltration of the islets by T CD8+ lymphocytes. The vector (DNAv) also determined immunomodulation but its protective effect against insulitis was very discrete. Conclusion: The data presented in this study encourages a further investigation in the regulatory potential of the DNA-HSP65 construct. Our findings have important implications for the development of new immune therapy strategies to combat autoimmune diseases. © 2009 Santos et al; licensee BioMed Central Ltd.
Resumo:
The antibody and cellular immune responses against infectious bronchitis virus (IBV) were evaluated at mucosal sites of chickens after immunization with various doses of an attenuated vaccine at 1 day of age. The correlation of these immune responses with protection of tracheal tissues was evaluated after experimental infection of these birds. Significantly reduced tracheal pathologic effects, measured according to ciliostasis and histology lesions, and reduced viral load were observed only in the full-dose vaccinated group at 5 days post-infection (dpi), while incomplete protection was observed for the subdose vaccinated groups. Moreover, birds of vaccinated groups, especially with full dose, developed higher levels of lachrymal IBV-specific IgG and IgA and increased the expression of cell-mediated immunity (CMI) genes, such as gamma interferon (IFNγ), CD8+ T cell marker, and granzyme homolog A more rapidly. In addition, these humoral and cellular immune responses evaluated at mucosal sites correlated significantly with tracheal protection against homologous IBV challenge in a vaccine dose-dependent manner. The results indicate that IgG, IgA and CD8+ T cell responses developed at mucosal sites after IBV vaccination of day-old chicks, could be taken as good correlates of protection against this virus. © 2013, Mary Ann Liebert, Inc.
Resumo:
Bos indicus bulls 20. months of age grazed on pasture in Minas Gerais, Brazil either received 2 doses of the GnRF vaccine Bopriva at d0 and d91 (group IC, n. =. 144) or were surgically castrated on d91 (group SC, n. =. 144). Slaughter on d280, was 27. weeks after castration. Adverse safety issues in 8% of group SC bulls following surgery contrasted with 0% in group IC bulls. At d105 testosterone levels were suppressed to similar levels in both groups. Importantly, group IC bulls had higher live weight, hot carcass weight, ADG (P<. 0.005) and dressing percentage (P<. 0.0001) compared to group SC animals. There were no negative effects on carcass or meat quality traits, thus immunocastration was concluded to offer a safe and effective method that provides production gains, and improves animal welfare in Bos indicus beef bulls without impacting meat and carcass quality. © 2013 Elsevier Ltd.
Resumo:
In previous immuno-epidemiological studies of the naturally acquired antibody responses to merozoite surface protein-1 (MSP-1) of Plasmodium vivax, we had evidence that the responses to distinct erythrocytic stage antigens could be differentially regulated. The present study was designed to compare the antibody response to three asexual erythrocytic stage antigens vaccine candidates of P. vivax. Recombinant proteins representing the 19 kDa C-terminal region of MSP-1(PvMSP19), apical membrane antigen n-1 ectodomain (PvAMA-1), and the region II of duffy binding protein (PvDBP-RII) were compared in their ability to bind to IgG antibodies of serum samples collected from 220 individuals from the state of Pará, in the North of Brazil. During patent infection with P. vivax, the frequency of individuals with IgG antibodies to PvMSP119, PvAMA-1, and PvDBP-RII were 95, 72.7, and 44.5% respectively. Although the frequency of responders to PvDBP-RII was lower, this frequency increased in individuals following multiple malarial infections. Individually, the specific antibody levels did not decline significantly nine months after treatment, except to PvMSP119. Our results further confirm a complex regulation of the immune response to distinct blood stage antigens. The reason for that is presently unknown but it may contribute to the high risk of re-infection in individuals living in the endemic areas.
Resumo:
Malaria remains the most prevalent and devastating parasitic disease worldwide. Vaccination is considered to be an approach that will complement other strategies for prevention and control of the disease in the future. In the last 10 years, intense studies aimed at the development of a malaria vaccine have provided important knowledge of the nature of the host immunological mechanisms of protection and their respective target antigens. It became well established that protective immune responses can be generated against the distinct stages of Plasmodium. However, in general, protective immune responses are directed at stage-specific antigens. The elucidation of the primary structure of these antigens made possible the generation of synthetic and recombinant proteins that are being extensively used in experimental immunizations against the infection. Today, several epitopes of limited polymorphism have been described and protective immunity can be generated by immunization with them. These epitopes are being tested as primary candidates for a subunit vaccine against malaria. Here we critically review the major roadblocks for the development of a malaria vaccine and provide some insight on how these problems are being solved.
Resumo:
In a large Phase III trial conducted in 10 Latin American countries, the safety and efficacy of the live attenuated monovalent rotavirus vaccine RIX4414 was evaluated in 15,183 healthy infants followed up during the first two years of life. Belém was the only site in Brazil included in this multicentre trial. The study in Belém included a subset of 653 infants who were followed up until 24 months of age for protection against severe rotavirus gastroenteritis. These subjects were randomly assigned in a 1:1 ratio to receive two doses of vaccine (n = 328) or two doses of placebo (n = 325) at approximately two and four months of age. Of the 653 enrolled infants, 23 dropped out during the study period. For the combined two-year period, the efficacy of RIX4414 was 72.3% [95% confidence interval (CI) 37.5-89.1%] against severe rotavirus-related gastroenteritis, reaching a protection rate of 81.8% (95% CI 36.4-96.6%) against circulating wild-type G9 rotavirus strains. It is concluded that two doses of RIX4414 are highly efficacious against severe rotavirus gastroenteritis in Belém during the first two years of life and provide high protection against the worldwide emergence and spread of G9P[8] strains.
Resumo:
An experiment was conducted to determine the effects of different coccidiosis-preventing programs on performance and intestinal morphology of commercial turkeys. Three hundred fifteen1-d-old female commercial cross turkey poults (British United Turkeys, BUT Big 9) were distributed into 3 treatments with 5 replicates of 21 birds each. Three programs were evaluated from 1 to 70 d of age, where program 1 had no anticoccidial drug and no vaccination against coccidiosis; program 2 had an anticoccidial drug (maduramycin 1%, 5 ppm); and program 3 had a vaccination (commercial vaccine, 4 species of Eimeria). All the groups were challenged with a dose of oocysts sporulated (20,000/bird) of 2 species of Eimeria at 21 d of age. In the growing phase (d 0-28), BW, BW gain, and FCR were significantly greater in treated groups compared with control group. In the fattening phase, the performance was not affected by treatments. Treatments and coccidiosis challenge had no significant effects on intestinal villus height. These observations support other reports that confirm live oocyst vaccination can be used effectively as a preventive against avian coccidiosis in commercially reared turkeys.
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: The vaccine against human papillomavirus (HPV) was created to abrogate the risk that the virus presents for the development of cervical cancers. The prevalence of HPV infection among healthy individuals is significant (20%). We performed a review of the literature published in the period from 2008 to 2012 regarding the use of the vaccine against HPV specifically in adolescents. Methods: The articles were selected from a search of the PubMed database with the key words "vaccine", "HPV" and "adolescent". This search identified 576 articles; based on readings of the titles and abstracts, the list of included article was reduced to 42. Results: We observed that the majority of authors are in favor of the vaccine for adolescents particularly females. Conclusion: Recommending the use of the HPV vaccine and other vaccines represents an attempt to broaden the reach of these vaccines among both sexes of the adolescent population. Vaccination is a strategy for the prevention of pre-cancerous Lesions in the genital and oropharyngeal regions. (C) 2014 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Limited. All rights reserved.