420 resultados para Conductors


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this dissertation is to produce a new Harmonie arrangement of Mozart’s Die Zauberflöte suitable for modern performance, bringing Joseph Heidenreich’s 1782 arrangement—one of the great treasures of the wind repertoire—to life for future performers and audiences. I took advantage of the capabilities of modern wind instruments and performance techniques, and employed other instruments normally found in the modern wind ensemble to create a work in the tradition of Heidenreich’s that restored as much of Mozart’s original thinking as possible. I expanded the Harmonie band to include flute and string bass. Other instruments provide special effects, a traditional role for wind instruments in the Classical opera orchestra. This arrangement is conceived to be performed with the original vocal soloists, making it a viable option for concert performance or for smaller staged productions. It is also intended to allow the wind players to be onstage with the singers, becoming part of the dramatic action while simultaneously serving as the “opera orchestra.” This allows creative staging possibilities, and offers the wind players an opportunity to explore new aspects of performing. My arrangement also restores Mozart’s music to its original keys and retains much of his original wind scoring. This arrangement expands the possibilities for collaboration between opera studios, voice departments or community opera companies and wind ensembles. A suite for winds without voices (currently in production) will allow conductors to program this major work from the Classical era without dedicating a concert program to the complete opera. Excerpted arias and duets from this arrangement provide vocalists the option of using chamber wind accompaniment on recitals. The door is now open to arrangements of other operas by composers such as Mozart, Rossini and Weber, adding new repertoire for chamber winds and bringing great music to life in a new way.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron transport in nanoscale structures is strongly influenced by the Coulomb interaction that gives rise to correlations in the stream of charges and leaves clear fingerprints in the fluctuations of the electrical current. A complete understanding of the underlying physical processes requires measurements of the electrical fluctuations on all time and frequency scales, but experiments have so far been restricted to fixed frequency ranges, as broadband detection of current fluctuations is an inherently difficult experimental procedure. Here we demonstrate that the electrical fluctuations in a single-electron transistor can be accurately measured on all relevant frequencies using a nearby quantum point contact for on-chip real-time detection of the current pulses in the single-electron device. We have directly measured the frequency-dependent current statistics and, hereby, fully characterized the fundamental tunnelling processes in the single-electron transistor. Our experiment paves the way for future investigations of interaction and coherence-induced correlation effects in quantum transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Incorporation of carbon nanostructures in metals is desirable to combine the strongly bonded electrons in the metal and the free electrons in carbon nanostructures that give rise to high ampacity and high conductivity, respectively. Carbon in copper has the potential to impact industries such as: building construction, power generation and transmission, and microelectronics. This thesis focuses on the structure and properties of bulk and thin films of a new material, Cu covetic, that contains carbon in concentrations up to 16 at.%. X-ray photoelectron spectroscopy (XPS) shows C 1s peak with both sp2 and sp3 bonded C measuring up to 3.5 wt.% (16 at.%). High resolution transmission electron microscopy and electron diffraction of bulk covetic samples show a modulated structure of ≈ 1.6 nm along several crystallographic directions in regions that have high C content suggesting that the carbon incorporates into the copper lattice forming a network. Electron energy loss spectra (EELS) from covetics reveal that the level of graphitization from the source material, activated carbon, is maintained in the covetic structure. Bulk Cu covetics have a slight increase in the lattice constant, as well as <111> texturing, or possibly a different structure, compared to pure Cu. Density functional theory calculations predict bonding between C and Cu at the edges and defects of graphene sheets. The electrical resistivity of bulk covetics first increases and then decreases with increasing C content. Cu covetic films were deposited using e-beam and pulsed laser deposition (PLD) at different temperatures. No copper oxide or any allotropes of carbon are present in the films. The e-beam films show enhanced electrical and optical properties when compared to pure Cu films of the same thickness even though no carbon was detected by XPS or EELS. They also have slightly higher ampacity than Cu metal films. EELS analysis of the C-K-edge in the PLD films indicate that graphitic carbon is transferred from the bulk into the films with uniform carbon distribution. PLD films exhibit flatter and higher transmittance curves and sheet resistance two orders of magnitude lower than e-beam films leading to a high figure of merit as transparent conductors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2015.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of non-equilibrium current fluctuations enable assessing correlations involved in quantum transport through nanoscale conductors. They provide additional information to the mean current on charge statistics and the presence of coherence, dissipation, disorder, or entanglement. Shot noise, being a temporal integral of the current autocorrelation function, reveals dynamical information. In particular, it detects presence of non-Markovian dynamics, i.e., memory, within open systems, which has been subject of many current theoretical studies. We report on low-temperature shot noise measurements of electronic transport through InAs quantum dots in the Fermi-edge singularity regime and show that it exhibits strong memory effects caused by quantum correlations between the dot and fermionic reservoirs. Our work, apart from addressing noise in archetypical strongly correlated system of prime interest, discloses generic quantum dynamical mechanism occurring at interacting resonant Fermi edges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2015.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tungsten/copper composites are commonly used for electrical and thermal objectives like heat sinks and lectrical conductors, propitiating an excellent thermal and electrical conductivity. These properties are dependents of the composition, crystallite size and production process. The high energy milling of the powder of W-Cu produces an dispersion high and homogenization levels with crystallite size of W very small in the ductile Cu phase. This work discusses the effect of the HEM in preparation of the W-25Cu composite powders. Three techniques of powder preparation were utilized: milling the dry with powder of thick Cu, milling the dry with powder of fine Cu and milling the wet with powder of thick Cu. The form, size and composition of the particles of the powders milled were observed by scanning electron microscopy (SEM). The X-ray diffraction (XRD) was used to analyse the phases, lattice parameters, size and microstrain of the crystallite. The analyse of the crystalline structure of the W-25Cu powders milled made by Rietveld Method suggests the partial solid solubility of the constituent elements of the Cu in lattice of the W. This analyse shows too that the HEM produces the reduction high on the crystallite size and the increase in the lattice strain of both phases, this is more intense in the phase W

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2D materials have attracted tremendous attention due to their unique physical and chemical properties since the discovery of graphene. Despite these intrinsic properties, various modification methods have been applied to 2D materials that yield even more exciting results. Among all modification methods, the intercalation of 2D materials provides the highest possible doping and/or phase change to the pristine 2D materials. This doping effect highly modifies 2D materials, with extraordinary electrical transport as well as optical, thermal, magnetic, and catalytic properties, which are advantageous for optoelectronics, superconductors, thermoelectronics, catalysis and energy storage applications. To study the property changes of 2D materials, we designed and built a planar nanobattery that allows electrochemical ion intercalation in 2D materials. More importantly, this planar nanobattery enables characterization of electrical, optical and structural properties of 2D materials in situ and real time upon ion intercalation. With this device, we successfully intercalated Li-ions into few layer graphene (FLG) and ultrathin graphite, heavily dopes the graphene to 0.6 x 10^15 /cm2, which simultaneously increased its conductivity and transmittance in the visible range. The intercalated LiC6 single crystallite achieved extraordinary optoelectronic properties, in which an eight-layered Li intercalated FLG achieved transmittance of 91.7% (at 550 nm) and sheet resistance of 3 ohm/sq. We extend the research to obtain scalable, printable graphene based transparent conductors with ion intercalation. Surfactant free, printed reduced graphene oxide transparent conductor thin film with Na-ion intercalation is obtained with transmittance of 79% and sheet resistance of 300 ohm/sq (at 550 nm). The figure of merit is calculated as the best pure rGO based transparent conductors. We further improved the tunability of the reduced graphene oxide film by using two layers of CNT films to sandwich it. The tunable range of rGO film is demonstrated from 0.9 um to 10 um in wavelength. Other ions such as K-ion is also studied of its intercalation chemistry and optical properties in graphitic materials. We also used the in situ characterization tools to understand the fundamental properties and improve the performance of battery electrode materials. We investigated the Na-ion interaction with rGO by in situ Transmission electron microscopy (TEM). For the first time, we observed reversible Na metal cluster (with diameter larger than 10 nm) deposition on rGO surface, which we evidenced with atom-resolved HRTEM image of Na metal and electron diffraction pattern. This discovery leads to a porous reduced graphene oxide sodium ion battery anode with record high reversible specific capacity around 450 mAh/g at 25mA/g, a high rate performance of 200 mAh/g at 250 mA/g, and stable cycling performance up to 750 cycles. In addition, direct observation of irreversible formation of Na2O on rGO unveils the origin of commonly observed low 1st Columbic Efficiency of rGO containing electrodes. Another example for in situ characterization for battery electrode is using the planar nanobattery for 2D MoS2 crystallite. Planar nanobattery allows the intrinsic electrical conductivity measurement with single crystalline 2D battery electrode upon ion intercalation and deintercalation process, which is lacking in conventional battery characterization techniques. We discovered that with a “rapid-charging” process at the first cycle, the lithiated MoS2 undergoes a drastic resistance decrease, which in a regular lithiation process, the resistance always increases after lithiation at its final stage. This discovery leads to a 2- fold increase in specific capacity with with rapid first lithiated MoS2 composite electrode material, compare with the regular first lithiated MoS2 composite electrode material, at current density of 250 mA/g.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionic liquids (ILs) are organic compounds liquid at room temperature, good electrical conductors, with the potential to form as a means for electrolyte on electrolysis of water, in which the electrodes would not be subjected to such extreme conditions demanding chemistry [1]. This paper describes the synthesis, characterization and study of the feasibility of ionic liquid ionic liquid 1-methyl-3(2,6-(S)-dimethyloct-2-ene)-imidazole tetrafluoroborate (MDI-BF4) as electrolyte to produce hydrogen through electrolysis of water. The MDI-BF4 synthesized was characterized by thermal methods of analysis (Thermogravimetric Analysis - TG and Differential Scanning Calorimetry - DSC), mid-infrared spectroscopy with Fourier transform by method of attenuated total reflectance (FTIR-ATR), nuclear magnetic resonance spectroscopy of hydrogen (NMR 1H) and cyclic voltammetry (CV). Where thermal methods were used to calculate the yield of the synthesis of MDI-BF4 which was 88.84%, characterized infrared spectroscopy functional groups of the compound and the binding B-F 1053 cm-1; the NMR 1H analyzed and compared with literature data defines the structure of MDI-BF4 and the current density achieved by MDI-BF4 in the voltammogram shows that the LI can conduct electrical current indicating that the MDI-BF4 is a good electrolyte, and that their behavior does not change with the increasing concentration of water

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the early 2000s the Orchestre Symphonique de Montréal (OSM), one of Montreal's foremost cultural institutions, underwent two upheavals. First management was thrown into turmoil by the unexpected departure of the OSM's celebrated music director, Charles Dutoit, just as the orchestra and its Swiss conductor were about to mark 25 years of successful partnership with celebrations planned for the 2002-03 season. Then, in May 2005, the orchestra's management and board were faced with a strike by the orchestra's musicians. The authors describe the efforts of the orchestra's general manager, Madeleine Careau, to revive its fortunes, notably through a campaign to restore the OSM's prestige, which had been severely eroded by these two events. With the support of internal and external collaborators, Careau turned her attention to the most pressing issues, namely the choice of a new conductor, the orchestra's planned new concert hall and the creation of a foundation to ensure stable, long-term financing for the OSM. To help bring this recovery plan to fruition, Careau drew on her extensive network of contacts. An all-female leadership team was formed at the OSM, as Careau called on Melanie La Couture (CEO), Helene Desmarais (deputy board chair) and Monique Jérôme-Forget (chair of the Quebec treasury board) to use their talents, expertise and influence to give new lustre to the OSM at home and abroad.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Across the globe there are numerous philanthropic organizations that support community music engagement. Philanthropy is the desire to promote the welfare of others and is generally supported by the generous donation of money to good causes. One such group situated in Melbourne is Creativity Australia who oversees the With One Voice choirs. This program offers weekly community choirs that are led by a professional conductor. Each meeting is followed by supper. The choirs are supported by public sponsorship and currently around 68% of the choir members are subsidised. In this multiple case study we interviewed stakeholders, conductors and members of several of the choirs. This research is part of a larger joint research project, begun in 2008, Well-being and ageing: community, diversity and the arts in Victoria. Data were gathered from documentary sources and by individual and focus group semi-structured interviews (2014-2015) and were analysed using interpretative phenomenological analysis. This paper explores the intersections of community music making and philanthropy

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proton transport has been recognized as an essential process in many biological systems, as well as electrochemical devices including fuel cells and redox flow batteries. In the present study, we address the pressing need for solvent-free proton conducting polymer electrolytes for high-temperature PEM fuel cell applications by developing a novel all-solid polyelectrolyte membrane with a self-assembled proton-channel structure. We show that this self-assembled nanostructure endows the material with exciting ‘dry’ proton conductivity at elevated temperatures, as high as 0.3 mS cm−1 at 120 °C, making it an attractive candidate for high-temperature PEM fuel cell applications. Based on the combined investigation of solid-state NMR, FTIR and conductivity measurements, we propose that both molecular design and nano-scale structures are essential for obtaining highly conductive anhydrous proton conductors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 The application of graphene based materials in the area of stretchable electronics has driven enormous attention, especially in terms of the design of stretchable structures. This thesis has finely tuned the synthesis process of reduced graphene oxide (rGO), focused on the introduction of a thermo-mechanical shrinking process to fabricate wrinkled rGO structure as stretchable conductors and finally presented another potential application of wrinkled rGO structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Equal-channel angular pressing (ECAP) was used to fabricate Al/steel bimetallic rod for potential application in overhead transmission conductors. Bimetallic rods consisted of an austenitic stainless steel 316L core and an Al alloy 6201 cladding layer. By means of ECAP processing at 175°C, increase of mechanical strength without loss of electrical conductivity was achieved for one particular rod geometry out of three geometries tested. X-ray diffraction and transmission electron microscopy were employed to analyse how the microstructure was influenced by the number of processing passes and the bimetallic rod geometry. The co-deformation mechanism of the bimetallic rod under ECAP and accelerated dynamic ageing of Al alloy 6201 were discussed based on the microstructure characterisation results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid-state ion conductors based on organic ionic plastic crystals (OIPCs) are a promising alternative to conventional liquid electrolytes in lithium battery applications. The OIPC-based electrolytes are safe (nonflammable) and flexible in terms of design and operating conditions. Magnetic resonance imaging (MRI) is a powerful noninvasive method enabling visualization of various chemical phenomena. Here, we report a first quantitative in situ MRI study of operating solid-state lithium cells. Lithium ion transfer into the OIPC matrix during the ongoing discharge of the anode results in partial liquefaction of the electrolyte at the metal interface. The developed liquid component enhances the ion transport across the interface and overall battery performance. Displacement of the liquefaction front is accompanied by a faster Li transfer through the grain boundaries and depletion at the cathode. The demonstrated solid-liquid hybrid properties, inherent in many OIPCs, combine benefits of highly conductive ionic liquids with safety and flexibility of solids.