909 resultados para Condition monitoring, SWOT analysis
Resumo:
Climate change is one of the biggest environmental problems of the 21st century. The most sensitive indicators of the effects of the climatic changes are phenological processes of the biota. The effects of climate change which were observed the earliest are the remarkable changes in the phenology (i.e. the timing of the phenophases) of the plants and animals, which have been systematically monitored later. In our research we searched for the answer: which meteorological factors show the strongest statistical relationships with phenological phenomena based on some chosen plant and insect species (in case of which large phenological databases are available). Our study was based on two large databases: one of them is the Lepidoptera database of the Hungarian Plant Protection and Forestry Light Trap Network, the other one is the Geophytes Phenology Database of the Botanical Garden of Eötvös Loránd University. In the case of butterflies, statistically defined phenological dates were determined based on the daily collection data, while in the case of plants, observation data on blooming were available. The same meteorological indicators were applied for both groups in our study. On the basis of the data series, analyses of correlation were carried out and a new indicator, the so-called G index was introduced, summing up the number of correlations which were found to be significant on the different levels of significance. In our present study we compare the significant meteorological factors and analyse the differences based on the correlation data on plants and butterflies. Data on butterflies are much more varied regarding the effectiveness of the meteorological factors.
Resumo:
Unmanned Aerial Vehicles (UAVs) may develop cracks, erosion, delamination or other damages due to aging, fatigue or extreme loads. Identifying these damages is critical for the safe and reliable operation of the systems. ^ Structural Health Monitoring (SHM) is capable of determining the conditions of systems automatically and continually through processing and interpreting the data collected from a network of sensors embedded into the systems. With the desired awareness of the systems’ health conditions, SHM can greatly reduce operational cost and speed up maintenance processes. ^ The purpose of this study is to develop an effective, low-cost, flexible and fault tolerant structural health monitoring system. The proposed Index Based Reasoning (IBR) system started as a simple look-up-table based diagnostic system. Later, Fast Fourier Transformation analysis and neural network diagnosis with self-learning capabilities were added. The current version is capable of classifying different health conditions with the learned characteristic patterns, after training with the sensory data acquired from the operating system under different status. ^ The proposed IBR systems are hierarchy and distributed networks deployed into systems to monitor their health conditions. Each IBR node processes the sensory data to extract the features of the signal. Classifying tools are then used to evaluate the local conditions with health index (HI) values. The HI values will be carried to other IBR nodes in the next level of the structured network. The overall health condition of the system can be obtained by evaluating all the local health conditions. ^ The performance of IBR systems has been evaluated by both simulation and experimental studies. The IBR system has been proven successful on simulated cases of a turbojet engine, a high displacement actuator, and a quad rotor helicopter. For its application on experimental data of a four rotor helicopter, IBR also performed acceptably accurate. The proposed IBR system is a perfect fit for the low-cost UAVs to be the onboard structural health management system. It can also be a backup system for aircraft and advanced Space Utility Vehicles. ^
Resumo:
Structural Health Monitoring (SHM) systems were developed to evaluate the integrity of a system during operation, and to quickly identify the maintenance problems. They will be used in future aerospace vehicles to improve safety, reduce cost and minimize the maintenance time of a system. Many SHM systems were already developed to evaluate the integrity of plates and used in marine structures. Their implementation in manufacturing processes is still expected. The application of SHM methods for complex geometries and welds are two important challenges in this area of research. This research work started by studying the characteristics of piezoelectric actuators, and a small energy harvester was designed. The output voltages at different frequencies of vibration were acquired to determine the nonlinear characteristics of the piezoelectric stripe actuators. The frequency response was evaluated experimentally. AA battery size energy harvesting devices were developed by using these actuators. When the round and square cross section devices were excited at 50 Hz frequency, they generated 16 V and 25 V respectively. The Surface Response to Excitation (SuRE) and Lamb wave methods were used to estimate the condition of parts with complex geometries. Cutting tools and welded plates were considered. Both approaches used piezoelectric elements that were attached to the surfaces of considered parts. The variation of the magnitude of the frequency response was evaluated when the SuRE method was used. The sum of the square of the differences was calculated. The envelope of the received signal was used for the analysis of wave propagation. Bi-orthogonal wavelet (Binlet) analysis was also used for the evaluation of the data obtained during Lamb wave technique. Both the Lamb wave and SuRE approaches along with the three methods for data analysis worked effectively to detect increasing tool wear. Similarly, they detected defects on the plate, on the weld, and on a separate plate without any sensor as long as it was welded to the test plate.
Resumo:
This study is an attempt at achieving Net Zero Energy Building (NZEB) using a solar Organic Rankine Cycle (ORC) based on exergetic and economic measures. The working fluid, working conditions of the cycle, cycle configuration, and solar collector type are considered the optimization parameters for the solar ORC system. In the first section, a procedure is developed to compare ORC working fluids based on their molecular components, temperature-entropy diagram and fluid effects on the thermal efficiency, net power generated, vapor expansion ratio, and exergy efficiency of the Rankine cycle. Fluids with the best cycle performance are recognized in two different temperature levels within two different categories of fluids: refrigerants and non-refrigerants. Important factors that could lead to irreversibility reduction of the solar ORC are also investigated in this study. In the next section, the system requirements needed to maintain the electricity demand of a geothermal air-conditioned commercial building located in Pensacola of Florida is considered as the criteria to select the optimal components and optimal working condition of the system. The solar collector loop, building, and geothermal air conditioning system are modeled using TRNSYS. Available electricity bills of the building and the 3-week monitoring data on the performance of the geothermal system are employed to calibrate the simulation. The simulation is repeated for Miami and Houston in order to evaluate the effect of the different solar radiations on the system requirements. The final section discusses the exergoeconomic analysis of the ORC system with the optimum performance. Exergoeconomics rests on the philosophy that exergy is the only rational basis for assigning monetary costs to a system’s interactions with its surroundings and to the sources of thermodynamic inefficiencies within it. Exergoeconomic analysis of the optimal ORC system shows that the ratio Rex of the annual exergy loss to the capital cost can be considered a key parameter in optimizing a solar ORC system from the thermodynamic and economic point of view. It also shows that there is a systematic correlation between the exergy loss and capital cost for the investigated solar ORC system.
Resumo:
Tree islands, a prominent feature in both the marl prairie and ridge and slough landscapes of the Everglades, are sensitive to large-scale restoration actions associated with the Comprehensive Everglades Restoration Plan (CERP) authorized by the Water Resources Development Act (WRDA) 2000 to restore the south Florida ecosystem. More specifically, changes in hydrologic regimes at both local and landscape scales are likely to affect the internal water economy of islands, which in turn will influence plant community structure and function. To strengthen our ability to assess the “performance” of tree island ecosystems and predict how these hydrologic alterations would translate into ecosystem response, an improved understating of reference conditions of vegetation structure and function, and their responses to major stressors is important. In this regard, a study of vegetation structure and composition in relation to associated physical and biological processes was initiated in 2005 with initial funding from Everglades National Park and South Florida Water Management District (SFWMD). The study continued through 2011 with funding from US Army Corps of Engineers (USACOE) (Cooperative Agreement # W912HZ-09-2-0019 Modification No.: P00001).
Resumo:
This report examines the interaction between hydrology and vegetation over a 10-year period, between 2001/02 and 2012 within six permanent tree island plots located on three tree islands, two plots each per tree island, established in 2001/02, along a hydrologic and productivity gradient. We hypothesize that: (H1) hydrologic differences within plots between census dates will result in marked differences in a) tree and sapling densities, b) tree basal area, and c) forest structure, i.e., canopy volume and height, and (H2) tree island growth, development, and succession is dependent on hydrologic fluxes, particularly during periods of prolonged droughts or below average hydroperiods.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
This work was supported by the National Natural Science Foundation of China No. 51204148 and the Fundamental Research Funds for the Central Universities
Resumo:
Peer reviewed
Resumo:
The use of structural health monitoring of civil structures is ever expanding and by assessing the dynamical condition of structures, informed maintenance management can be conducted at both individual and network levels. With the continued growth of information age technology, the potential arises for smart monitoring systems to be integrated with civil infrastructure to provide efficient information on the condition of a structure. The focus of this thesis is the integration of smart technology with civil infrastructure for the purposes of structural health monitoring. The technology considered in this regard are devices based on energy harvesting materials. While there has been considerable focus on the development and optimisation of such devices using steady state loading conditions, their applications for civil infrastructure are less known. Although research is still in initial stages, studies into the uses associated with such applications are very promising. Through the use of the dynamical response of structures to a variety of loading conditions, the energy harvesting outputs from such devices is established and the potential power output determined. Through a power variance output approach, damage detection of deteriorating structures using the energy harvesting devices is investigated. Further applications of the integration of energy harvesting devices with civil infrastructure investigated by this research includes the use of the power output as a indicator for control. Four approaches are undertaken to determine the potential applications arising from integrating smart technology with civil infrastructure, namely • Theoretical analysis to determine the applications of energy harvesting devices for vibration based health monitoring of civil infrastructure. • Laboratory experimentation to verify the performance of different energy harvesting configurations for civil infrastructure applications. • Scaled model testing as a method to experimentally validate the integration of the energy harvesting devices with civil infrastructure. • Full scale deployment of energy harvesting device with a bridge structure. These four approaches validate the application of energy harvesting technology with civil infrastructure from a theoretical, experimental and practical perspective.
Resumo:
A compositional multivariate approach is used to analyse regional scale soil geochemical data obtained as part of the Tellus Project generated by the Geological Survey Northern Ireland (GSNI). The multi-element total concentration data presented comprise XRF analyses of 6862 rural soil samples collected at 20cm depths on a non-aligned grid at one site per 2 km2. Censored data were imputed using published detection limits. Using these imputed values for 46 elements (including LOI), each soil sample site was assigned to the regional geology map provided by GSNI initially using the dominant lithology for the map polygon. Northern Ireland includes a diversity of geology representing a stratigraphic record from the Mesoproterozoic, up to and including the Palaeogene. However, the advance of ice sheets and their meltwaters over the last 100,000 years has left at least 80% of the bedrock covered by superficial deposits, including glacial till and post-glacial alluvium and peat. The question is to what extent the soil geochemistry reflects the underlying geology or superficial deposits. To address this, the geochemical data were transformed using centered log ratios (clr) to observe the requirements of compositional data analysis and avoid closure issues. Following this, compositional multivariate techniques including compositional Principal Component Analysis (PCA) and minimum/maximum autocorrelation factor (MAF) analysis method were used to determine the influence of underlying geology on the soil geochemistry signature. PCA showed that 72% of the variation was determined by the first four principal components (PC’s) implying “significant” structure in the data. Analysis of variance showed that only 10 PC’s were necessary to classify the soil geochemical data. To consider an improvement over PCA that uses the spatial relationships of the data, a classification based on MAF analysis was undertaken using the first 6 dominant factors. Understanding the relationship between soil geochemistry and superficial deposits is important for environmental monitoring of fragile ecosystems such as peat. To explore whether peat cover could be predicted from the classification, the lithology designation was adapted to include the presence of peat, based on GSNI superficial deposit polygons and linear discriminant analysis (LDA) undertaken. Prediction accuracy for LDA classification improved from 60.98% based on PCA using 10 principal components to 64.73% using MAF based on the 6 most dominant factors. The misclassification of peat may reflect degradation of peat covered areas since the creation of superficial deposit classification. Further work will examine the influence of underlying lithologies on elemental concentrations in peat composition and the effect of this in classification analysis.
Resumo:
Web openings could be used in cold-formed steel beam members, such as wall studs or floor joints, to facilitate ease of services in buildings. In this paper, a combination of tests and non-linear finite element analyses is used to investigate the effect of such holes on web crippling under end-one-flange (EOF) loading condition; the cases of both flanges fastened and unfastened to the bearing plates are considered. The results of 74 web crippling tests are presented, with 22 tests conducted on channel sections without web openings and 52 tests conducted on channel sections with web openings. In the case of the tests with web openings, the hole was either located centred above the bearing plates or having a horizontal clear distance to the near edge of the bearing plates. A good agreement between the tests and finite element analyses was obtained in term of both strength and failure modes.
Resumo:
The BlackEnergy malware targeting critical infrastructures has a long history. It evolved over time from a simple DDoS platform to a quite sophisticated plug-in based malware. The plug-in architecture has a persistent malware core with easily installable attack specific modules for DDoS, spamming, info-stealing, remote access, boot-sector formatting etc. BlackEnergy has been involved in several high profile cyber physical attacks including the recent Ukraine power grid attack in December 2015. This paper investigates the evolution of BlackEnergy and its cyber attack capabilities. It presents a basic cyber attack model used by BlackEnergy for targeting industrial control systems. In particular, the paper analyzes cyber threats of BlackEnergy for synchrophasor based systems which are used for real-time control and monitoring functionalities in smart grid. Several BlackEnergy based attack scenarios have been investigated by exploiting the vulnerabilities in two widely used synchrophasor communication standards: (i) IEEE C37.118 and (ii) IEC 61850-90-5. Specifically, the paper addresses reconnaissance, DDoS, man-in-the-middle and replay/reflection attacks on IEEE C37.118 and IEC 61850-90-5. Further, the paper also investigates protection strategies for detection and prevention of BlackEnergy based cyber physical attacks.
Resumo:
Attention Deficit Hyperactivity Disorder (ADHD) is one the most prevalent of childhood diagnoses. There is limited research available from the perspective of the child or young person with ADHD. The current research explored how young people perceive ADHD. A secondary aim of the study was to explore to what extent they identify with ADHD. Five participants took part in this study. Their views were explored using semi-structured interviews guided by methods from Personal Construct Psychology. The data was analysed using Interpretative Phenomenological Analysis (IPA). Data analysis suggests that the young people’s views of ADHD are complex and, at times, contradictory. Four super-ordinate themes were identified: What is ADHD?, The role and impact of others on the experience of ADHD, Identity conflict and My relationship with ADHD. The young people’s contradictory views on ADHD are reflective of portrayals of ADHD in the media. A power imbalance was also identified where the young people perceive that they play a passive role in the management of their treatment. Finally, the young people’s accounts revealed a variety of approaches taken to make sense of their condition.