974 resultados para Computing cost
Resumo:
Hospitals invest considerable resources organizing operating suites and having surgeons and theatre staff available on an agreed schedule. A common impediment to efficiency is perioperative delay,including delays getting to the operating room or during the operation. Perioperative delays entail significant costs for hospitals,wasting staff time and operating theatre resources. They may also affect patient outcomes; prolonged surgery is a predictor for unanticipated admission following elective ambulatory surgery...
Resumo:
Active learning approaches reduce the annotation cost required by traditional supervised approaches to reach the same effectiveness by actively selecting informative instances during the learning phase. However, effectiveness and robustness of the learnt models are influenced by a number of factors. In this paper we investigate the factors that affect the effectiveness, more specifically in terms of stability and robustness, of active learning models built using conditional random fields (CRFs) for information extraction applications. Stability, defined as a small variation of performance when small variation of the training data or a small variation of the parameters occur, is a major issue for machine learning models, but even more so in the active learning framework which aims to minimise the amount of training data required. The factors we investigate are a) the choice of incremental vs. standard active learning, b) the feature set used as a representation of the text (i.e., morphological features, syntactic features, or semantic features) and c) Gaussian prior variance as one of the important CRFs parameters. Our empirical findings show that incremental learning and the Gaussian prior variance lead to more stable and robust models across iterations. Our study also demonstrates that orthographical, morphological and contextual features as a group of basic features play an important role in learning effective models across all iterations.
Resumo:
Most of the existing algorithms for approximate Bayesian computation (ABC) assume that it is feasible to simulate pseudo-data from the model at each iteration. However, the computational cost of these simulations can be prohibitive for high dimensional data. An important example is the Potts model, which is commonly used in image analysis. Images encountered in real world applications can have millions of pixels, therefore scalability is a major concern. We apply ABC with a synthetic likelihood to the hidden Potts model with additive Gaussian noise. Using a pre-processing step, we fit a binding function to model the relationship between the model parameters and the synthetic likelihood parameters. Our numerical experiments demonstrate that the precomputed binding function dramatically improves the scalability of ABC, reducing the average runtime required for model fitting from 71 hours to only 7 minutes. We also illustrate the method by estimating the smoothing parameter for remotely sensed satellite imagery. Without precomputation, Bayesian inference is impractical for datasets of that scale.
Resumo:
The recognition of the potential efficacy of plasmid DNA (pDNA) molecules as vectors in the treatment and prevention of emerging diseases has birthed the confidence to combat global pandemics. This is due to the close-to-zero safety concern associated with pDNA vectors compared to viral vectors in cell transfection and targeting. Considerable attention has been paid to the potential of pDNA vectors but comparatively less thought has been given to the practical challenges in producing large quantities to meet current rising demands. A pilot-scale fermentation scheme was developed by employing a stoichiometrically-designed growth medium whose exceptional plasmid yield performance was attested in a shake flask environment for pUC19 and pEGFP-N1 transformed into E. coliDH5α and E. coliJM109, respectively. Batch fermentation of E. coliDH5α-pUC19 employing the stoichiometric medium displayed a maximum plasmid volumetric and specific yield of 62.6 mg/L and 17.1 mg/g (mg plasmid/g dry cell weight), respectively. Fed-batch fermentation of E. coliDH5α-pUC19 on a glycerol substrate demonstrated one of the highest ever reported pilot-scale plasmid specific yield of 48.98 mg/g and a volumetric yield of 0.53 g/L. The attainment of high plasmid specific yields constitutes a decrease in plasmid manufacturing cost and enhances the effectiveness of downstream processes by reducing the proportion of intracellular impurities. The effect of step-rise temperature induction was also considered to maximize ColE1-origin plasmid replication.
Resumo:
Individualization of design is often necessary particularly when designing with people with disabilities. Maker communities, with their flexible Do-It-Yourself (DIY) practices, offer potential to support individualized and cost-effective product design. However, efforts to adapt DIY practices in designing with people with disabilities tend to face difficulties with regard to continuous commitment, infrastructure provision and proper guidance. We carried out interviews with diverse stakeholders in the disability services sector and carried out observations of local makerspaces to understand their current practices and potential for future collaborations. We found that makerspace participants face difficulties in terms of infrastructure provision and proper guidance whereas Disability Service Organizations face difficulties in continuous expertise. We suggest that artful infrastructuring to blend the best of both approaches offers potential to create a sustainable community that can design individualized technologies to support people with disabilities.
Resumo:
Ever growing populations in cities are associated with a major increase in road vehicles and air pollution. The overall high levels of urban air pollution have been shown to be of a significant risk to city dwellers. However, the impacts of very high but temporally and spatially restricted pollution, and thus exposure, are still poorly understood. Conventional approaches to air quality monitoring are based on networks of static and sparse measurement stations. However, these are prohibitively expensive to capture tempo-spatial heterogeneity and identify pollution hotspots, which is required for the development of robust real-time strategies for exposure control. Current progress in developing low-cost micro-scale sensing technology is radically changing the conventional approach to allow real-time information in a capillary form. But the question remains whether there is value in the less accurate data they generate. This article illustrates the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, whilst addressing the major challenges for their effective implementation.
Resumo:
This paper develops a dynamic model for cost-effective selection of sites for restoring biodiversity when habitat quality develops over time and is uncertain. A safety-first decision criterion is used for ensuring a minimum level of habitats, and this is formulated in a chance-constrained programming framework. The theoretical results show; (i) inclusion of quality growth reduces overall cost for achieving a future biodiversity target from relatively early establishment of habitats, but (ii) consideration of uncertainty in growth increases total cost and delays establishment, and (iii) cost-effective trading of habitat requires exchange rate between sites that varies over time. An empirical application to the red listed umbrella species - white-backed woodpecker - shows that the total cost of achieving habitat targets specified in the Swedish recovery plan is doubled if the target is to be achieved with high reliability, and that equilibrating price on a habitat trading market differs considerably between different quality growth combinations. © 2013 Elsevier GmbH.
Resumo:
Introduced predators can have pronounced effects on naïve prey species; thus, predator control is often essential for conservation of threatened native species. Complete eradication of the predator, although desirable, may be elusive in budget-limited situations, whereas predator suppression is more feasible and may still achieve conservation goals. We used a stochastic predator-prey model based on a Lotka-Volterra system to investigate the cost-effectiveness of predator control to achieve prey conservation. We compared five control strategies: immediate eradication, removal of a constant number of predators (fixed-number control), removal of a constant proportion of predators (fixed-rate control), removal of predators that exceed a predetermined threshold (upper-trigger harvest), and removal of predators whenever their population falls below a lower predetermined threshold (lower-trigger harvest). We looked at the performance of these strategies when managers could always remove the full number of predators targeted by each strategy, subject to budget availability. Under this assumption immediate eradication reduced the threat to the prey population the most. We then examined the effect of reduced management success in meeting removal targets, assuming removal is more difficult at low predator densities. In this case there was a pronounced reduction in performance of the immediate eradication, fixed-number, and lower-trigger strategies. Although immediate eradication still yielded the highest expected minimum prey population size, upper-trigger harvest yielded the lowest probability of prey extinction and the greatest return on investment (as measured by improvement in expected minimum population size per amount spent). Upper-trigger harvest was relatively successful because it operated when predator density was highest, which is when predator removal targets can be more easily met and the effect of predators on the prey is most damaging. This suggests that controlling predators only when they are most abundant is the "best" strategy when financial resources are limited and eradication is unlikely. © 2008 Society for Conservation Biology.
Resumo:
Individuals with limb amputation fitted with conventional socket-suspended prostheses often experience socket-related discomfort leading to a significant decrease in quality of life. Bone-anchored prostheses are increasingly acknowledged as viable alternative method of attachment of artificial limb. In this case, the prosthesis is attached directly to the residual skeleton through a percutaneous fixation. To date, a few osseointegration fixations are commercially available. Several devices are at different stages of development particularly in Europe and the US. [1-15] Clearly, surgical procedures are currently blooming worldwide. Indeed, Australia and Queensland, in particular, have one of the fastest growing populations. Previous studies involving either screw-type implants or press-fit fixations for bone-anchorage have focused on biomechanics aspects as well as the clinical benefits and safety of the procedure. [16-25] In principle, bone-anchored prostheses should eliminate lifetime expenses associated with sockets and, consequently, potentially alleviate the financial burden of amputation for governmental organizations. Sadly, publications focusing on cost-effectiveness are sparse. In fact, only one study published by Haggstrom et al (2012), reported that “despite significantly fewer visits for prosthetic service the annual mean costs for osseointegrated prostheses were comparable with socket-suspended prostheses”.[26] Consequently, governmental organizations such as Queensland Artificial Limb Services (QALS) are facing a number of challenges while adjusting financial assistance schemes that should be fair and equitable to their clients fitted with bone-anchored prostheses. Clearly, more scientific evidence extracted from governmental databases is needed to further consolidate the analyses of financial burden associated with both methods of attachment (i.e., conventional sockets prostheses, bone-anchored prostheses). The purposes of the presentation will be: 1. To outline methodological avenues to assess the cost-effectiveness of bone-anchored prostheses compared to conventional sockets prostheses, 2. To highlight the potential obstacles and limitations in cost-effectiveness analyses of bone-anchored prostheses, 3. To present preliminary results of a cost-comparison analysis focusing on the comparison of the costs expressed in dollars over QALS funding cycles for both methods of attachment.
Resumo:
Biological systems are typically complex and adaptive, involving large numbers of entities, or organisms, and many-layered interactions between these. System behaviour evolves over time, and typically benefits from previous experience by retaining memory of previous events. Given the dynamic nature of these phenomena, it is non-trivial to provide a comprehensive description of complex adaptive systems and, in particular, to define the importance and contribution of low-level unsupervised interactions to the overall evolution process. In this chapter, the authors focus on the application of the agent-based paradigm in the context of the immune response to HIV. Explicit implementation of lymph nodes and the associated lymph network, including lymphatic chain structure, is a key objective, and requires parallelisation of the model. Steps taken towards an optimal communication strategy are detailed.
Resumo:
Background Recent advances in Immunology highlighted the importance of local properties on the overall progression of HIV infection. In particular, the gastrointestinal tract is seen as a key area during early infection, and the massive cell depletion associated with it may influence subsequent disease progression. This motivated the development of a large-scale agent-based model. Results Lymph nodes are explicitly implemented, and considerations on parallel computing permit large simulations and the inclusion of local features. The results obtained show that GI tract inclusion in the model leads to an accelerated disease progression, during both the early stages and the long-term evolution, compared to a theoretical, uniform model. Conclusions These results confirm the potential of treatment policies currently under investigation, which focus on this region. They also highlight the potential of this modelling framework, incorporating both agent-based and network-based components, in the context of complex systems where scaling-up alone does not result in models providing additional insights.
Resumo:
Biomedical systems involve a large number of entities and intricate interactions between these. Their direct analysis is, therefore, difficult, and it is often necessary to rely on computational models. These models require significant resources and parallel computing solutions. These approaches are particularly suited, given parallel aspects in the nature of biomedical systems. Model hybridisation also permits the integration and simultaneous study of multiple aspects and scales of these systems, thus providing an efficient platform for multidisciplinary research.