983 resultados para Communication protocol stack


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hidden-node problem has been shown to be a major source of Quality-of-Service (QoS) degradation in Wireless Sensor Networks (WSNs) due to factors such as the limited communication range of sensor nodes, link asymmetry and the characteristics of the physical environment. In wireless contention-based Medium Access Control protocols, if two nodes that are not visible to each other transmit to a third node that is visible to the formers, there will be a collision – usually called hidden-node or blind collision. This problem greatly affects network throughput, energy-efficiency and message transfer delays, which might be particularly dramatic in large-scale WSNs. This technical report tackles the hidden-node problem in WSNs and proposes HNAMe, a simple yet efficient distributed mechanism to overcome it. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes and then scales to multiple clusters via a cluster grouping strategy that guarantees no transmission interference between overlapping clusters. We also show that the H-NAMe mechanism can be easily applied to the IEEE 802.15.4/ZigBee protocols with only minor add-ons and ensuring backward compatibility with the standard specifications. We demonstrate the feasibility of H-NAMe via an experimental test-bed, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. We believe that the results in this technical report will be quite useful in efficiently enabling IEEE 802.15.4/ZigBee as a WSN protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The IEEE 802.15.4/Zigbee protocols are a promising technology for Wireless Sensor Networks (WSNs). This paper shares our experience on the implementation and use of these protocols and related technologies in WSNs. We present problems and challenges we have been facing in implementing an IEEE 802.15.4/ZigBee stack for TinyOS in a two-folded perspective: IEEE 802.15.4/ZigBee protocol standards limitations (ambiguities and open issues) and technological limitations (hardware and software). Concerning the former, we address challenges for building scalable and synchronized multi-cluster ZigBee networks, providing a trade-off between timeliness and energy-efficiency. On the latter issue, we highlight implementation problems in terms of hardware, timer handling and operating system limitations. We also report on our experience from experimental test-beds, namely on physical layer aspects such as coexistence problems between IEEE 802.15.4 and 802.11 radio channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider a wireless sensor network (WSN) where a broadcast from a sensor node does not reach all sensor nodes in the network; such networks are often called multihop networks. Sensor nodes take sensor readings but individual sensor readings are not very important. It is important however to compute aggregated quantities of these sensor readings. The minimum and maximum of all sensor readings at an instant are often interesting because they indicate abnormal behavior, for example if the maximum temperature is very high then it may be that a fire has broken out. We propose an algorithm for computing the min or max of sensor reading in a multihop network. This algorithm has the particularly interesting property of having a time complexity that does not depend on the number of sensor nodes; only the network diameter and the range of the value domain of sensor readings matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider a network where all nodes share a single broadcast domain such as a wired broadcast network. Nodes take sensor readings but individual sensor readings are not the most important pieces of data in the system. Instead, we are interested in aggregated quantities of the sensor readings such as minimum and maximum values, the number of nodes and the median among a set of sensor readings on different nodes. In this paper we show that a prioritized medium access control (MAC) protocol may advantageously be exploited to efficiently compute aggregated quantities of sensor readings. In this context, we propose a distributed algorithm that has a very low time and message-complexity for computing certain aggregated quantities. Importantly, we show that if every sensor node knows its geographical location, then sensor data can be interpolated with our novel distributed algorithm, and the message-complexity of the algorithm is independent of the number of nodes. Such an interpolation of sensor data can be used to compute any desired function; for example the temperature gradient in a room (e.g., industrial plant) densely populated with sensor nodes, or the gas concentration gradient within a pipeline or traffic tunnel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider a communication medium shared among a set of computer nodes; these computer nodes issue messages that are requested to be transmitted and they must finish their transmission before their respective deadlines. TDMA/SS is a protocol that solves this problem; it is a specific type of Time Division Multiple Access (TDMA) where a computer node is allowed to skip its time slot and then this time slot can be used by another computer node. We present an algorithm that computes exact queuing times for TDMA/SS in conjunction with Rate-Monotonic (RM) or Earliest- Deadline-First (EDF).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The IEEE 802.15.4 protocol has the ability to support time-sensitive Wireless Sensor Network (WSN) applications due to the Guaranteed Time Slot (GTS) Medium Access Control mechanism. Recently, several analytical and simulation models of the IEEE 802.15.4 protocol have been proposed. Nevertheless, currently available simulation models for this protocol are both inaccurate and incomplete, and in particular they do not support the GTS mechanism. In this paper, we propose an accurate OPNET simulation model, with focus on the implementation of the GTS mechanism. The motivation that has driven this work is the validation of the Network Calculus based analytical model of the GTS mechanism that has been previously proposed and to compare the performance evaluation of the protocol as given by the two alternative approaches. Therefore, in this paper we contribute an accurate OPNET model for the IEEE 802.15.4 protocol. Additionally, and probably more importantly, based on the simulation model we propose a novel methodology to tune the protocol parameters such that a better performance of the protocol can be guaranteed, both concerning maximizing the throughput of the allocated GTS as well as concerning minimizing frame delay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new strategy to integrate shared resources and precedence constraints among real-time tasks, assuming no precise information on critical sections and computation times is available. The concept of bandwidth inheritance is combined with a capacity sharing and stealing mechanism to efficiently exchange bandwidth among tasks to minimise the degree of deviation from the ideal system’s behaviour caused by inter-application blocking. The proposed Capacity Exchange Protocol (CXP) is simpler than other proposed solutions for sharing resources in open real-time systems since it does not attempt to return the inherited capacity in the same exact amount to blocked servers. This loss of optimality is worth the reduced complexity as the protocol’s behaviour nevertheless tends to be fair and outperforms the previous solutions in highly dynamic scenarios as demonstrated by extensive simulations. A formal analysis of CXP is presented and the conditions under which it is possible to guarantee hard real-time tasks are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hidden-node problem has been shown to be a major source of Quality-of-Service (QoS) degradation in Wireless Sensor Networks (WSNs) due to factors such as the limited communication range of sensor nodes, link asymmetry and the characteristics of the physical environment. In wireless contention-based Medium Access Control protocols, if two nodes that are not visible to each other transmit to a third node that is visible to the formers, there will be a collision – usually called hidden-node or blind collision. This problem greatly affects network throughput, energy-efficiency and message transfer delays, which might be particularly dramatic in large-scale WSNs. This paper tackles the hiddennode problem in WSNs and proposes H-NAMe, a simple yet efficient distributed mechanism to overcome it. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes and then scales to multiple clusters via a cluster grouping strategy that guarantees no transmission interference between overlapping clusters. We also show that the H-NAMe mechanism can be easily applied to the IEEE 802.15.4/ZigBee protocols with only minor add-ons and ensuring backward compatibility with the standard specifications. We demonstrate the feasibility of H-NAMe via an experimental test-bed, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. We believe that the results in this paper will be quite useful in efficiently enabling IEEE 802.15.4/ZigBee as a WSN protocol

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diaphragm is the principal inspiratory muscle. Different techniques have been used to assess diaphragm motion. Among them, M-mode ultrasound has gain particular interest since it is non-invasive and accessible. However it is operator-dependent and no objective acquisition protocol has been established. Purpose: to establish a reliable method for the assessment of the diaphragmatic motion via the M-mode ultrasound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider a distributed computer system such that every computer node can perform a wireless broadcast and when it does so, all other nodes receive this message. The computer nodes take sensor readings but individual sensor readings are not very important. It is important however to compute the aggregated quantities of these sensor readings. We show that a prioritized medium access control (MAC) protocol for wireless broadcast can compute simple aggregated quantities in a single transaction, and more complex quantities with many (but still a small number of) transactions. This leads to significant improvements in the time-complexity and as a consequence also similar reduction in energy “consumption”.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks including sensor networks. It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When enabling its beacon mode, the protocol makes possible real-time guarantees by using its Guaranteed Time Slot (GTS) mechanism. This paper analyzes the performance of the GTS allocation mechanism in IEEE 802.15.4. The analysis gives a full understanding of the behavior of the GTS mechanism with regards to delay and throughput metrics. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters. We then evaluate the delay bounds guaranteed by an allocation of a GTS using Network Calculus formalism. Finally, based on the analytic results, we analyze the impact of the IEEE 802.15.4 parameters on the throughput and delay bound guaranteed by a GTS allocation. The results of this work pave the way for an efficient dimensioning of an IEEE 802.15.4 cluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this essay is to discuss the thesis of the German Sociologist Günter Burkhart that in modern societies a phenomenon appeared which he calls “handymania”, an excessive and nearly addictive use of the mobile phones especially from adolescents. After a short overview about the history of the cell phone, I will relate this development to Jürgen Habermas “theory of communicative action”, more precisely to his diagnosis of a pathological society (“lifeworld”) to find out if the “handymania” could be one expression of it. Adjacent I will present social-psychological theories from E.H.Erikson and Tilmann Habermas to ascertain whether juveniles could really be a high-risk group for this kind of addiction. I will focus on the ability to communicate in an Habermasian way that could be seriously harmed by the unregulated usage of cell phones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we analyze the performance limits of the slotted CSMA/CA mechanism of IEEE 802.15.4 in the beacon-enabled mode for broadcast transmissions in WSNs. The motivation for evaluating the beacon-enabled mode is due to its flexibility for WSN applications as compared to the non-beacon enabled mode. Our analysis is based on an accurate simulation model of the slotted CSMA/CA mechanism on top of a realistic physical layer, with respect to the IEEE 802.15.4 standard specification. The performance of the slotted CSMA/CA is evaluated and analyzed for different network settings to understand the impact of the protocol attributes (superframe order, beacon order and backoff exponent) on the network performance, namely in terms of throughput (S), average delay (D) and probability of success (Ps). We introduce the concept of utility (U) as a combination of two or more metrics, to determine the best offered load range for an optimal behavior of the network. We show that the optimal network performance using slotted CSMA/CA occurs in the range of 35% to 60% with respect to an utility function proportional to the network throughput (S) divided by the average delay (D).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider the problem of scheduling sporadic message transmission requests with deadlines. For wired channels, this has been achieved successfully using the CAN bus. For wireless channels, researchers have recently proposed a similar solution; a collision-free medium access control (MAC) protocol that implements static-priority scheduling. Unfortunately no implementation has been reported, yet. We implement and evaluate it to find that the implementation indeed is collision-free and prioritized. This allows us to develop schedulability analysis for the implementation. We measure the response times of messages in our implementation and find that our new response-time analysis indeed offers an upper bound on the response times. This enables a new class of wireless real-time systems with timeliness guarantees for sporadic messages and it opens-up a new research area: schedulability analysis for wireless networks.