991 resultados para Circumferential bone defects


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE Recent review articles have shown that open debridement is more effective in the treatment of peri-implantitis than closed therapy. However, surgery may result in marginal recession and compromise esthetics. The purpose of this study was to assess the efficacy of nonsurgical antimicrobial photodynamic therapy (aPDT) in moderate vs severe defects. METHOD AND MATERIALS The study encompassed 16 patients with a total of 18 ailing implants. Ten of these implants showed moderate bone loss (< 5 mm; Group 1) and eight implants severe defects (5 through 8 mm; Group 2). All implants received aPDT without surgical intervention. At baseline and 2 weeks, 3 months, and 6 months after therapy, peri-implant health was assessed including sulcus bleeding index (SBI), probing depth (PD), distance from implant shoulder to marginal mucosa (DIM), and clinical attachment level (CAL). Radiographic evaluation of distance from implant to bone (DIB) allowed comparison of peri-implant hard tissues after 6 months. RESULTS Baseline values for SBI were comparable in both groups. Three months after therapy, in both groups, SBI and CAL decreased significantly. In contrast, after 6 months, CAL and DIB increased significantly in Group 2, not in Group 1. However, DIM-values were not statistically different 6 months after therapy in both groups. CONCLUSION Within the limits of this 6-month study, nonsurgical aPDT could stop bone resorption in moderate peri-implant defects but not in severe defects. However, marginal tissue recession was not significantly different in both groups at the end of the study. Therefore, especially in esthetically important sites, surgical treatment of severe peri-implantitis defects seems to remain mandatory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES The aim of the study was to clinically and histologically evaluate the healing of human intrabony defects treated with open flap surgery (OFD) and application of a new, resorbable, fully synthetic, unsintered, nanocrystalline, phase-pure hydroxyapatite (nano-HA). MATERIALS AND METHODS Six patients, each of them displaying very advanced intrabony defects around teeth scheduled for extraction due to advanced chronic periodontitis and further prosthodontic considerations, were included in the study. Following local anaesthesia, mucoperiosteal flaps were reflected; the granulation tissue was removed, and the roots were meticulously debrided by hand and ultrasonic instruments. A notch was placed at the most apical extent of the calculus present on the root surface or at the most apical part of the defect (if no calculus was present) in order to serve as a reference for the histological evaluation. Following defect fill with nano-HA, the flaps were sutured by means of mattress sutures to allow primary intention healing. At 7 months after regenerative surgery, the teeth were extracted together with some of their surrounding soft and hard tissues and processed for histological analysis. RESULTS The postoperative healing was uneventful in all cases. At 7 months following surgery, mean PPD reduction and mean CAL gain measured 4.0 ± 0.8 and 2.5 ± 0.8 mm, respectively. The histological analysis revealed a healing predominantly characterized by epithelial downgrowth. Limited formation of new cementum with inserting connective tissue fibers and bone regeneration occurred in three out of the six biopsies (i.e. 0-0.86 and 0-1.33 mm, respectively). Complete resorption of the nano-HA was found in four out of the six biopsies. A few remnants of the graft particles (either surrounded by newly formed mineralized tissue or encapsulated in connective tissue) were found in two out of the six biopsies. CONCLUSION Within their limits, the present results indicate that nano-HA has limited potential to promote periodontal regeneration in human intrabony defects. CLINICAL RELEVANCE The clinical outcomes obtained following surgery with OFD + nano-HA may not reflect true periodontal regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES Recent studies suggest that a combination of enamel matrix derivative (EMD) with grafting material may improve periodontal wound healing/regeneration. Newly developed calcium phosphate (CaP) ceramics have been demonstrated a viable synthetic replacement option for bone grafting filler materials. AIMS This study aims to test the ability for EMD to adsorb to the surface of CaP particles and to determine the effect of EMD on downstream cellular pathways such as adhesion, proliferation, and differentiation of primary human osteoblasts and periodontal ligament (PDL) cells. MATERIALS AND METHODS EMD was adsorbed onto CaP particles and analyzed for protein adsorption patterns via scanning electron microscopy and high-resolution immunocytochemistry with an anti-EMD antibody. Cell attachment and cell proliferation were quantified using CellTiter 96 One Solution Cell Assay (MTS). Cell differentiation was analyzed using real-time PCR for genes encoding Runx2, alkaline phosphatase, osteocalcin, and collagen1α1, and mineralization was assessed using alizarin red staining. RESULTS Analysis of cell attachment revealed significantly higher number of cells attached to EMD-adsorbed CaP particles when compared to control and blood-adsorbed samples. EMD also significantly increased cell proliferation at 3 and 5 days post-seeding. Moreover, there were significantly higher mRNA levels of osteoblast differentiation markers including collagen1α1, alkaline phosphatase, and osteocalcin in osteoblasts and PDL cells cultured on EMD-adsorbed CaP particles at various time points. CONCLUSION The present study suggests that the addition of EMD to CaP grafting particles may influence periodontal regeneration by stimulating PDL cell and osteoblast attachment, proliferation, and differentiation. Future in vivo and clinical studies are required to confirm these findings. CLINICAL RELEVANCE The combination of EMD and CaP may represent an option for regenerative periodontal therapy in advanced intrabony defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To systematically analyze the regenerative effect of the available biomaterials either alone or in various combinations for the treatment of periodontal intrabony defects as evaluated in preclinical histologic studies. DATA SOURCES A protocol covered all aspects of the systematic review methodology. A literature search was performed in Medline, including hand searching. Combinations of searching terms and several criteria were applied for study identification, selection, and inclusion. The preliminary outcome variable was periodontal regeneration after reconstructive surgery obtained with the various regenerative materials, as demonstrated through histologic/ histomorphometric analysis. New periodontal ligament, new cementum, and new bone formation as a linear measurement in mm or as a percentage of the instrumented root length were recorded. Data were extracted based on the general characteristics, study characteristics, methodologic characteristics, and conclusions. Study selection was limited to preclinical studies involving histologic analysis, evaluating the use of potential regenerative materials (ie, barrier membranes, grafting materials, or growth factors/proteins) for the treatment of periodontal intrabony defects. Any type of biomaterial alone or in various combinations was considered. All studies reporting histologic outcome measures with a healing period of at least 6 weeks were included. A meta-analysis was not possible due to the heterogeneity of the data. CONCLUSION Flap surgery in conjunction with most of the evaluated biomaterials used either alone or in various combinations has been shown to promote periodontal regeneration to a greater extent than control therapy (flap surgery without biomaterials). Among the used biomaterials, autografts revealed the most favorable outcomes, whereas the use of most biologic factors showed inferior results compared to flap surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE Over 15 years have passed since an enamel matrix derivative (EMD) was introduced as a biologic agent capable of periodontal regeneration. Histologic and controlled clinical studies have provided evidence for periodontal regeneration and substantial clinical improvements following its use. The purpose of this review article was to perform a systematic review comparing the eff ect of EMD when used alone or in combination with various types of bone grafting material. DATA SOURCES A literature search was conducted on several medical databases including Medline, EMBASE, LILACS, and CENTRAL. For study inclusion, all studies that used EMD in combination with a bone graft were included. In the initial search, a total of 820 articles were found, 71 of which were selected for this review article. Studies were divided into in vitro, in vivo, and clinical studies. The clinical studies were subdivided into four subgroups to determine the eff ect of EMD in combination with autogenous bone, allografts, xenografts, and alloplasts. RESULTS The analysis from the present study demonstrates that while EMD in combination with certain bone grafts is able to improve the regeneration of periodontal intrabony and furcation defects, direct evidence supporting the combination approach is still missing. CONCLUSION Further controlled clinical trials are required to explain the large variability that exists amongst the conducted studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Demineralized bone matrix (DBM) is used for the treatment of osseous defects. Conditioned medium from native bone chips can activate transforming growth factor (TGF)-β signaling in mesenchymal cells. The aim of the study was to determine whether processing of native bone into DBM affects the activity of the conditioned medium. METHODS: Porcine cortical bone blocks were subjected to defatting, different concentrations of hydrochloric acid and various temperatures. DBM was lyophilized, ground, and placed into culture medium. Human gingiva and periodontal fibroblasts were exposed to the respective conditioned medium (DBCM). Changes in the expression of TGF-β target genes were determined. RESULTS: DBCM altered the expression of TGF-β target genes, e.g., adrenomedullin, pentraxin 3, KN Motif And Ankyrin Repeat Domains 4, interleukin 11, NADPH oxidase 4, and BTB (POZ) Domain Containing 11, by at least five-fold. The response was observed in fibroblasts from both sources. Defatting lowered the activity of DBCM. The TGF-β receptor type I kinase inhibitor SB431542, but not the inhibitor of bone morphogenetic protein receptor dorsomorphin, blocked the effects of DBCM on gene expression. Moreover, conditioned medium obtained from commercial human DBM modulated the expression of TGF-β target genes. CONCLUSION: The findings suggest that the conditioned medium from demineralized bone matrix can activate TGF-β signaling in oral fibroblasts. KEYWORDS: TGF-beta superfamily proteins; bone; bone substitutes; bone transplantation; conditioned media; freeze drying

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preclinical in vivo experimental studies are performed for evaluating proof-of-principle concepts, safety and possible unwanted reactions of candidate bone biomaterials before proceeding to clinical testing. Specifically, models involving small animals have been developed for screening bone biomaterials for their potential to enhance bone formation. No single model can completely recreate the anatomic, physiologic, biomechanic and functional environment of the human mouth and jaws. Relevant aspects regarding physiology, anatomy, dimensions and handling are discussed in this paper to elucidate the advantages and disadvantages of small-animal models. Model selection should be based not on the 'expertise' or capacities of the team, but rather on a scientifically solid rationale, and the animal model selected should reflect the question for which an answer is sought. The rationale for using heterotopic or orthotopic testing sites, and intraosseous, periosseous or extraskeletal defect models, is discussed. The paper also discusses the relevance of critical size defect modeling, with focus on calvarial defects in rodents. In addition, the rabbit sinus model and the capsule model in the rat mandible are presented and discussed in detail. All animal experiments should be designed with care and include sample-size and study-power calculations, thus allowing generation of meaningful data. Moreover, animal experiments are subject to ethical approval by the relevant authority. All procedures and the postoperative handling and care, including postoperative analgesics, should follow best practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM Vitamin D deficiency is considered to diminish bone regeneration. Yet, raising the serum levels takes months. A topic application of the active vitamin D metabolite, calcitriol, may be an effective approach. Thus, it becomes important to know the effect of vitamin D deficiency and local application on alveolar bone regeneration. MATERIAL AND METHODS Sixty rats were divided into three groups; two vitamin depletion groups and a control group. Identical single defects (2 mm diameter) were created in the maxilla and mandible treated with calcitriol soaked collagen in one deficiency group while in the other two groups not. Histomorphometric analysis and micro CTs were performed after 1 and 3 weeks. Serum levels of 25(OH)D3 and PTH were determined. RESULTS Bone formation rate significantly increased within the observation period in all groups. Bone regeneration was higher in the maxilla than in the mandible. However, bone regeneration was lower in the control group compared to vitamin depletion groups, with no significant effects by local administration of calcitriol (micro CT mandible p = 0.003, maxilla p < 0.001; histomorphometry maxilla p = 0.035, mandible p = 0.18). CONCLUSION Vitamin D deficiency not necessarily impairs bone regeneration in the rat jaw and a single local calcitriol application does not enhance healing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM The local delivery of growth factors via gene therapy has gained tremendous awareness in recent years due to their sustained growth factor delivery to target tissues. The aim of this study was to fabricate and investigate a scaffold able to release growth factors via gene therapy for the repair of periodontal tissues. MATERIALS AND METHODS Novel mesoporous bioglass (MBG)/silk fibrin scaffold combined with BMP7 and/or PDGF-B adenovirus was fabricated and tested in vitro for cell migration, proliferation and differentiation. Furthermore, acute-type buccal dehiscence periodontal defects (mesiodistal width × depth: 5 × 5 mm) were created on the buccal portion of the maxillary premolars in five normal male beagle dogs (12 months old, 15.0 ± 2.0 kg) and histologically examined for periodontal regeneration following implantation of the following five groups: (1) no scaffold, (2) MBG/silk scaffold alone, (3) scaffold + adPDGF-B, (4) scaffold + adBMP7, (5) scaffold + adPDGF-b + adBMP7. RESULTS In vitro findings demonstrated that adPDGF-B was able to rapidly recruit periodontal ligament (PDL) cells over sixfold more effectively than adBMP7, whereas adBMP7 was more able to induce osteoblast differentiation of PDL cells. In vivo findings demonstrate that scaffolds loaded with adPDGF-B were able to partially regenerate the periodontal ligament while adBMP7 scaffolds primarily improved new bone formation. The combination of both adPDGF-B and adBMP7 synergistically promoted periodontal regeneration by allowing up to two times greater regeneration of the periodontal ligament, alveolar bone and cementum when compared to each adenovirus used alone. CONCLUSIONS Although both PDGF-B and BMP7 are individually capable of promoting periodontal regeneration to some degree, their combination synergistically promotes wound healing in acute-type buccal dehiscence periodontal defects when delivered simultaneously. This study demonstrates the promise for successful delivery of low-cost, effective growth factor delivery via gene therapy for the treatment of periodontal defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intrabony periodontal defects are a frequent complication of periodontitis and, if left untreated, may negatively affect long-term tooth prognosis. The optimal outcome of treatment in intrabony defects is considered to be the absence of bleeding on probing, the presence of shallow pockets associated with periodontal regeneration (i.e. formation of new root cementum with functionally orientated inserting periodontal ligament fibers connected to new alveolar bone) and no soft-tissue recession. A plethora of different surgical techniques, often including implantation of various types of bone graft and/or bone substitutes, root surface demineralization, guided tissue regeneration, growth and differentiation factors, enamel matrix proteins or various combinations thereof, have been employed to achieve periodontal regeneration. Despite positive observations in animal models and successful outcomes reported for many of the available regenerative techniques and materials in patients, including histologic reports, robust information on the degree to which reported clinical improvements reflect true periodontal regeneration does not exist. Thus, the aim of this review was to summarize, in a systematic manner, the available histologic evidence on the effect of reconstructive periodontal surgery using various types of biomaterials to enhance periodontal wound healing/regeneration in human intrabony defects. In addition, the inherent problems associated with performing human histologic studies and in interpreting the results, as well as certain ethical considerations, are discussed. The results of the present systematic review indicate that periodontal regeneration in human intrabony defects can be achieved to a variable extent using a range of methods and materials. Periodontal regeneration has been observed following the use of a variety of bone grafts and substitutes, guided tissue regeneration, biological factors and combinations thereof. Combination approaches appear to provide the best outcomes, whilst implantation of alloplastic material alone demonstrated limited, to no, periodontal regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Treatment of furcation defects is a core component of periodontal therapy. The goal of this consensus report is to critically appraise the evidence and to subsequently present interpretive conclusions regarding the effectiveness of regenerative therapy for the treatment of furcation defects and recommendations for future research in this area. METHODS A systematic review was conducted before the consensus meeting. This review aims to evaluate and present the available evidence regarding the effectiveness of different regenerative approaches for the treatment of furcation defects in specific clinical scenarios compared with conventional surgical therapy. During the meeting, the outcomes of the systematic review, as well as other pertinent sources of evidence, were discussed by a committee of nine members. The consensus group members submitted additional material for consideration by the group in advance and at the time of the meeting. The group agreed on a comprehensive summary of the evidence and also formulated recommendations for the treatment of furcation defects via regenerative therapies and the conduction of future studies. RESULTS Histologic proof of periodontal regeneration after the application of a combined regenerative therapy for the treatment of maxillary facial, mesial, distal, and mandibular facial or lingual Class II furcation defects has been demonstrated in several studies. Evidence of histologic periodontal regeneration in mandibular Class III defects is limited to one case report. Favorable outcomes after regenerative therapy for maxillary Class III furcation defects are limited to clinical case reports. In Class I furcation defects, regenerative therapy may be beneficial in certain clinical scenarios, although generally Class I furcation defects may be treated predictably with non-regenerative therapies. There is a paucity of data regarding quantifiable patient-reported outcomes after surgical treatment of furcation defects. CONCLUSIONS Based on the available evidence, it was concluded that regenerative therapy is a viable option to achieve predictable outcomes for the treatment of furcation defects in certain clinical scenarios. Future research should test the efficacy of novel regenerative approaches that have the potential to enhance the effectiveness of therapy in clinical scenarios associated historically with less predictable outcomes. Additionally, future studies should place emphasis on histologic demonstration of periodontal regeneration in humans and also include validated patient-reported outcomes. CLINICAL RECOMMENDATIONS Based on the prevailing evidence, the following clinical recommendations could be offered. 1) Periodontal regeneration has been established as a viable therapeutic option for the treatment of various furcation defects, among which Class II defects represent a highly predictable scenario. Hence, regenerative periodontal therapy should be considered before resective therapy or extraction; 2) The application of a combined therapeutic approach (i.e., barrier, bone replacement graft with or without biologics) appears to offer an advantage over monotherapeutic algorithms; 3) To achieve predictable regenerative outcomes in the treatment of furcation defects, adverse systemic and local factors should be evaluated and controlled when possible; 4) Stringent postoperative care and subsequent supportive periodontal therapy are essential to achieve sustainable long-term regenerative outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of extracellular matrix materials as scaffolds for the repair and regeneration of tissues is receiving increased attention. The current study was undertaken to test whether extracellular matrix formed by osteoblasts in vitro could be used as a scaffold for osteoblast transplantation and induce new bone formation in critical size osseous defects in vivo. Human osteoblasts derived from alveolar bone were cultured in six-well plates until confluent and then in mineralization media for a further period of 3 weeks to form an osteoblast-mineralized matrix complex. Histologically, at this time point a tissue structure with a connective tissue-like morphology was formed. Type I collagen was the major extracellular component present and appeared to determine the matrix macrostructure. Other bone-related proteins such as alkaline phosphatase (ALP), bone morphogenetic protein (BMP)-2 and -4, bone sialoprotein (BSP), osteopontin (OPN), and osteocalcin (OCN) also accumulated in the matrix. The osteoblasts embedded in this matrix expressed mRNAs for these bone-related proteins very strongly. Nodules of calcification were detected in the matrix and there was a correlation between calcification and the distribution of BSP and OPN. When this matrix was transplanted into a critical size bone defect in skulls of inummodeficient mice (SCID), new bone formation occurred. Furthermore, the cells inside the matrix survived and proliferated in the recipient sites, and were traceable by the human-specific Alu gene sequence using in situ hybridization. It was found that bone-forming cells differentiated from both transplanted human osteoblasts and activated endogenous mesenchymal cells. This study indicates that a mineralized matrix, formed by human osteoblasts in vitro, can be used as a scaffold for osteoblast transplantation, which subsequently can induce new bone formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Crim1 gene encodes a transmembrane protein containing six cysteine-rich repeats similar to those found in the BMP antagonist, chordin (chd). To investigate its physiological role, zebrafish crim1 was cloned and shown to be both maternally and zygotically expressed during zebrafish development in sites including the vasculature, intermediate cell mass. notochord, and otic vesicle. Bent or hooked tails with U-shaped somites were observed in 85% of morphants from 12 hpf. This was accompanied by a loss of muscle pioneer cells. While morpholino knockdown of crim1 showed some evidence of ventralisation, including expansion of the intermediate cell mass (ICM), reduction in head size bent tails and disruption to the somites and notochord, this did not mimic the classically ventralised phenotype, as assessed by the pattern of expression of the dorsal markers chordin, otx2 and the ventral markers eve1, pax2.1, tall and gata1 between 75% epiboly and six-somites. From 24 hpf, morphants displayed an expansion of the ventral mesoderm-derived ICM, as evidenced by expansion of tall. Imo2 and crim1 itself. Analysis of the crim1 morphant phenotype in Tg(fli:EGFP) fish showed a clear reduction in the endothelial cells forming the intersegmental vessels and a loss of the dorsal longitudinal anastomotic vessel (DLAV). Hence, the primary role of zebrafish crim1 is likely to be the regulation of somitic and vascular development. (c) 2006 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé : La maladie osseuse de Paget (MP) est un désordre squelettique caractérisé par une augmentation focale et désorganisée du remodelage osseux. Les ostéoclastes (OCs) de MP sont plus larges, actifs et nombreux, en plus d’être résistants à l’apoptose. Même si la cause précise de la MP demeure inconnue, des mutations du gène SQSTM1, codant pour la protéine p62, ont été décrites dans une proportion importante de patients avec MP. Parmi ces mutations, la substitution P392L est la plus fréquente, et la surexpression de p62P392L dans les OCs génère un phénotype pagétique partiel. La protéine p62 est impliquée dans de multiples processus, allant du contrôle de la signalisation NF-κB à l’autophagie. Dans les OCs humains, un complexe multiprotéique composé de p62 et des kinases PKCζ et PDK1 est formé en réponse à une stimulation par Receptor Activator of Nuclear factor Kappa-B Ligand (RANKL), principale cytokine impliquée dans la formation et l'activation des OCs. Nous avons démontré que PKCζ est impliquée dans l’activation de NF-κB induite par RANKL dans les OCs, et dans son activation constitutive en présence de p62P392L. Nous avons également observé une augmentation de phosphorylation de Ser536 de p65 par PKCζ, qui est indépendante d’IκB et qui pourrait représenter une voie alternative d'activation de NF-κB en présence de la mutation de p62. Nous avons démontré que les niveaux de phosphorylation des régulateurs de survie ERK et Akt sont augmentés dans les OCs MP, et réduits suite à l'inhibition de PDK1. La phosphorylation des substrats de mTOR, 4EBP1 et la protéine régulatrice Raptor, a été évaluée, et une augmentation des deux a été observée dans les OCs pagétiques, et est régulée par l'inhibition de PDK1. Également, l'augmentation des niveaux de base de LC3II (associée aux structures autophagiques) observée dans les OCs pagétiques a été associée à un défaut de dégradation des autophagosomes, indépendante de la mutation p62P392L. Il existe aussi une réduction de sensibilité à l’induction de l'autophagie dépendante de PDK1. De plus, l’inhibition de PDK1 induit l’apoptose autant dans les OCs contrôles que pagétiques, et mène à une réduction significative de la résorption osseuse. La signalisation PDK1/Akt pourrait donc représenter un point de contrôle important dans l’activation des OCs pagétiques. Ces résultats démontrent l’importance de plusieurs kinases associées à p62 dans la sur-activation des OCs pagétiques, dont la signalisation converge vers une augmentation de leur survie et de leur fonction de résorption, et affecte également le processus autophagique.