999 resultados para Cicloadiciones 1,3-dipolares


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high yielding and robust protocol for the stereodefined synthesis of 1,3-dienes has been established through a hydrosilylation–Hiyama coupling strategy. In all cases the products were formed as single E,E isomers and conditions are tolerant of a wide range of functional groups not compatible with other methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metallo-azomethine ylides, generated from imines by the action of amine bases in combination with LiBr or AgOAc, undergo cycloaddition with both 1R, 2S, 5R- and 1S, 2R, 5S-menthyl acrylate at room temperature to give homochiral pyrrolidines in excellent yield. The stronger the base the faster the cycloaddition and the greater the yield with: 2-t-butyl-1,1,3,3-tetramethylguanidine > DBU > NEt(3) X-Ray crystal structures of representative cycloadducts establish that the absolute configuration of the newly established pyrrolidine stereocentres is independent of the metal salt and the size of the pyrrolidineC(2)-substituent for a series of aryl and aliphatic imines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Letter, an unambiguous synthetic strategy is reported for the preparation of enantiomerically purecis-5-halo-piperazic acid derivatives in single diastereoisomer form. Contrary to the recent report by Shin and co-workers (Chem. Lett. 2001, 1172), in which it is claimed that the Ph3P and N-chlorosuccinimide (NCS)-mediated chlorination of (3R,5S)-trans-N(1),N(2)-di-t-Boc-5-hydroxy-piperazic acid derivative 1proceeds with retention of configuration at C(5) to give 2, we now show that this and related Ph3P-mediated halogenations all occur with SN2 inversion at the alcohol center, as is customary for such reactions. Specifically, we demonstrate that the (3R,5S)-trans-5-Cl-piperazic acid derivative 2 claimed by Shin and co-workers (Chem. Lett. 2001, 1172) is in actual fact the chlorinated (3S,5R)-enantiomer 6, which must have been prepared from the cis-(3S,5S)-alcohol 3, a molecule whose synthesis is not formally described in the Shin paper. We further show here that the cis-(3R,5R)-5-Cl-Piz 13 claimed by Shin and co-workers inChem. Lett. 2001, 1172, is also (3S,5R)-trans-5-Cl-Piz 6. Authentic 13 has now been synthesized by us, for the very first time, here. Since Lindsley and Kennedy have recently utilized the now invalid Shin and co-workers’ retentive Ph3P/NCS chlorination procedure on 1 in their synthetic approach to piperazimycin A (Tetrahedron Lett. 2010, 51, 2493), it follows that their claimed 5-Cl-Piz-containing dipeptide 25 probably has the alternate structure 26, where the 5-Cl-Piz residue has a 3,5-cis-configuration. The aforementioned stereochemical misassignments appear to have come from a mix-up of starting materials by Shin and co-workers (Chem. Lett. 2001, 1172), and an under-appreciation of the various steric and conformational effects that operate in N(2)-acylated piperazic acid systems, most especially rotameric A1,3-strain. The latter has now been unambiguously delineated and defined here under the banner of the A1,3-rotamer effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combining whole cell biocatalysis and chemocatalysis in a single reaction sequence avoids unnecessary separations, and the associated waste and energy consumption. Bacterial fermentation has been employed to convert waste glycerol from biodiesel production into 1,3-propanediol. This 1,3-propanediol can be extracted selectively from the aqueous fermentation broth using ionic liquids. 1,3-propanediol in ionic liquid solution was converted to propanal by hydrogen transfer initiated dehydration (HTID) catalysed by a Cp*IrCl2(NHC) (Cp* = pentamethylcyclopentadienyl; NHC = carbene ligand) complex. The use of an ionic liquid solvent enabled the reaction to be performed under reduced pressure, facilitating the isolation of the product, and improving the reaction selectivity. The Ir(III) catalyst in ionic liquid was found to be highly recyclable.